Regular Holonomic $D$-modules and Distributions on Complex Manifolds

Author(s):  
Masaki Kashiwara
Keyword(s):  
2019 ◽  
Vol 2019 (753) ◽  
pp. 23-56 ◽  
Author(s):  
Christian Miebach ◽  
Karl Oeljeklaus

AbstractWe systematically study Schottky group actions on homogeneous rational manifolds and find two new families besides those given by Nori’s well-known construction. This yields new examples of non-Kähler compact complex manifolds having free fundamental groups. We then investigate their analytic and geometric invariants such as the Kodaira and algebraic dimension, the Picard group and the deformation theory, thus extending results due to Lárusson and to Seade and Verjovsky. As a byproduct, we see that the Schottky construction allows to recover examples of equivariant compactifications of {{\rm{SL}}(2,\mathbb{C})/\Gamma} for Γ a discrete free loxodromic subgroup of {{\rm{SL}}(2,\mathbb{C})}, previously obtained by A. Guillot.


Author(s):  
Dan Popovici ◽  
Jonas Stelzig ◽  
Luis Ugarte

Abstract For every positive integer r, we introduce two new cohomologies, that we call E r {E_{r}} -Bott–Chern and E r {E_{r}} -Aeppli, on compact complex manifolds. When r = 1 {r\kern-1.0pt=\kern-1.0pt1} , they coincide with the usual Bott–Chern and Aeppli cohomologies, but they are coarser, respectively finer, than these when r ≥ 2 {r\geq 2} . They provide analogues in the Bott–Chern–Aeppli context of the E r {E_{r}} -cohomologies featuring in the Frölicher spectral sequence of the manifold. We apply these new cohomologies in several ways to characterise the notion of page- ( r - 1 ) {(r-1)} - ∂ ⁡ ∂ ¯ {\partial\bar{\partial}} -manifolds that we introduced very recently. We also prove analogues of the Serre duality for these higher-page Bott–Chern and Aeppli cohomologies and for the spaces featuring in the Frölicher spectral sequence. We obtain a further group of applications of our cohomologies to the study of Hermitian-symplectic and strongly Gauduchon metrics for which we show that they provide the natural cohomological framework.


Author(s):  
Masaki Kashiwara ◽  
Pierre Schapira
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document