reductive lie algebra
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Dmitri I Panyushev ◽  
Oksana S Yakimova

Abstract The symmetric algebra ${\mathcal{S}}({{\mathfrak{g}}})$ of a reductive Lie algebra ${{\mathfrak{g}}}$ is equipped with the standard Poisson structure, that is, the Lie–Poisson bracket. Poisson-commutative subalgebras of ${\mathcal{S}}({{\mathfrak{g}}})$ attract a great deal of attention because of their relationship to integrable systems and, more recently, to geometric representation theory. The transcendence degree of a Poisson-commutative subalgebra ${\mathcal C}\subset{\mathcal{S}}({{\mathfrak{g}}})$ is bounded by the “magic number” ${\boldsymbol{b}}({{\mathfrak{g}}})$ of ${{\mathfrak{g}}}$. There are two classical constructions of $\mathcal C$ with ${\textrm{tr.deg}}\,{\mathcal C}={\boldsymbol{b}}({{\mathfrak{g}}})$. The 1st one is applicable to $\mathfrak{gl}_n$ and $\mathfrak{so}_n$ and uses the Gelfand–Tsetlin chains of subalgebras. The 2nd one is known as the “argument shift method” of Mishchenko–Fomenko. We generalise the Gelfand–Tsetlin approach to chains of almost arbitrary symmetric subalgebras. Our method works for all types. Starting from a symmetric decompositions ${{\mathfrak{g}}}={{\mathfrak{g}}}_0\oplus{{\mathfrak{g}}}_1$, Poisson-commutative subalgebras ${{\mathcal{Z}}},\tilde{{\mathcal{Z}}}\subset{\mathcal{S}}({{\mathfrak{g}}})^{{{\mathfrak{g}}}_0}$ of the maximal possible transcendence degree are constructed. If the ${{\mathbb{Z}}}_2$-contraction ${{\mathfrak{g}}}_0\ltimes{{\mathfrak{g}}}_1^{\textsf{ab}}$ has a polynomial ring of symmetric invariants, then $\tilde{{\mathcal{Z}}}$ is a polynomial maximal Poisson-commutative subalgebra of ${\mathcal{S}}({{\mathfrak{g}}})^{{{\mathfrak{g}}}_0}$ and its free generators are explicitly described.


2019 ◽  
Vol 30 (03) ◽  
pp. 451-466
Author(s):  
Dietrich Burde ◽  
Vsevolod Gubarev

We introduce post-associative algebra structures and study their relationship to post-Lie algebra structures, Rota–Baxter operators and decompositions of associative algebras and Lie algebras. We show several results on the existence of such structures. In particular, we prove that there exists no post-Lie algebra structure on a pair [Formula: see text], where [Formula: see text] is a simple Lie algebra and [Formula: see text] is a reductive Lie algebra, which is not isomorphic to [Formula: see text]. We also show that there is no post-associative algebra structure on a pair [Formula: see text] arising from a Rota–Baxter operator of [Formula: see text], where [Formula: see text] is a semisimple associative algebra and [Formula: see text] is not semisimple. The proofs use results on Rota–Baxter operators and decompositions of algebras.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850037
Author(s):  
G. Lakshmi Devi ◽  
K. Jayalakshmi

In this paper, we describe the reductive pair [Formula: see text] with fixed decomposition [Formula: see text] and construct a reductive Vinberg [Formula: see text] ring relative to [Formula: see text] which is based on the construction of nonassociative algebras with specified simple Lie algebra [Formula: see text] of derivations. As a special case, we construct a class of Vinberg [Formula: see text] algebras ([Formula: see text], [Formula: see text] of dimension 8 with [Formula: see text] [Formula: see text] and determine its associated reductive Lie algebra [Formula: see text] [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document