scholarly journals Maximal functions, Riesz potentials and Sobolev's inequality in generalized Lebesgue spaces

Author(s):  
Yoshihiro Mizuta ◽  
Tetsu Shimomura
2004 ◽  
Vol 2 (1) ◽  
pp. 55-69 ◽  
Author(s):  
David E. Edmunds ◽  
Vakhtang Kokilashvili ◽  
Alexander Meskhi

A trace inequality for the generalized Riesz potentialsIα(x)is established in spacesLp(x)defined on spaces of homogeneous type. The results are new even in the case of Euclidean spaces. As a corollary a criterion for a two-weighted inequality in classical Lebesgue spaces for potentialsIα(x)defined on fractal sets is derived.


2019 ◽  
Vol 63 (2) ◽  
pp. 287-303
Author(s):  
Takao Ohno ◽  
Tetsu Shimomura

AbstractOur aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


Author(s):  
TAKAO OHNO ◽  
TETSU SHIMOMURA

Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$ . As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


Sign in / Sign up

Export Citation Format

Share Document