Strongly Fully Invariant-Extending Modular Lattices

2021 ◽  
pp. 1-11
Author(s):  
Toma Albu ◽  
Yeliz Kara ◽  
Adnan Tercan
Keyword(s):  
2003 ◽  
Vol 99 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Heng Huat Chan ◽  
Kok Seng Chua ◽  
Patrick Solé

1987 ◽  
Vol 101 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Joseph P. S. Kung

AbstractLet and ℳ be subsets of a finite lattice L. is said to be concordant with ℳ if, for every element x in L, either x is in ℳ or there exists an element x+ such that (CS1) the Möbius function μ(x, x+) ≠ 0 and (CS2) for every element j in , x ∨ j ≠ x+. We prove that if is concordant with ℳ, then the incidence matrix I(ℳ | ) has maximum possible rank ||, and hence there exists an injection σ: → ℳ such that σ(j) ≥ j for all j in . Using this, we derive several rank and covering inequalities in finite lattices. Among the results are generalizations of the Dowling-Wilson inequalities and Dilworth's covering theorem to semimodular lattices, and a refinement of Dilworth's covering theorem for modular lattices.


2014 ◽  
Vol 30 (2) ◽  
pp. 225-229
Author(s):  
GABRIELA OLTEANU ◽  

We define Baer-Galois connections between bounded modular lattices. We relate them to lifting lattices and we show that they unify the theories of (relatively) Baer and dual Baer modules.


1965 ◽  
Vol 17 ◽  
pp. 923-932 ◽  
Author(s):  
Laurence R. Alvarez

If (L, ≥) is a lattice or partial order we may think of its Hesse diagram as a directed graph, G, containing the single edge E(c, d) if and only if c covers d in (L, ≥). This graph we shall call the graph of (L, ≥). Strictly speaking it is the basis graph of (L, ≥) with the loops at each vertex removed; see (3, p. 170).We shall say that an undirected graph Gu can be realized as the graph of a (modular) (distributive) lattice if and only if there is some (modular) (distributive) lattice whose graph has Gu as its associated undirected graph.


1981 ◽  
Vol 24 (2) ◽  
pp. 187-198 ◽  
Author(s):  
Alan Day

In [8] and subsequent papers, Jônsson (et al) developed a lattice identity which reflects precisely Desargues Law in projective geometry in that a projective geometry satisfies Desargues Law if and only if the geometry, qua lattice, satisfies this identity. This identity, appropriately called the Arguesian law, has become exceedingly important in recent investigations in the variety of modular lattices (see for example [2], [3], [9], and [12]). In this note, we supply two possible lattice identities for the Pappus' Law of projective geometry.


Sign in / Sign up

Export Citation Format

Share Document