Undirected Graphs Realizable as Graphs of Modular Lattices

1965 ◽  
Vol 17 ◽  
pp. 923-932 ◽  
Author(s):  
Laurence R. Alvarez

If (L, ≥) is a lattice or partial order we may think of its Hesse diagram as a directed graph, G, containing the single edge E(c, d) if and only if c covers d in (L, ≥). This graph we shall call the graph of (L, ≥). Strictly speaking it is the basis graph of (L, ≥) with the loops at each vertex removed; see (3, p. 170).We shall say that an undirected graph Gu can be realized as the graph of a (modular) (distributive) lattice if and only if there is some (modular) (distributive) lattice whose graph has Gu as its associated undirected graph.

1986 ◽  
Vol 9 (1) ◽  
pp. 85-94
Author(s):  
Robert Endre Tarjan

Many linear-time graph algorithms using depth-first search have been invented. We propose simplified versions of two such algorithms, for computing a bipolar orientation or st-numbering of an undirected graph and for finding all feedback vertices of a directed graph.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950076
Author(s):  
Thomas Fleming ◽  
Joel Foisy

A directed graph [Formula: see text] is intrinsically linked if every embedding of that graph contains a nonsplit link [Formula: see text], where each component of [Formula: see text] is a consistently oriented cycle in [Formula: see text]. A tournament is a directed graph where each pair of vertices is connected by exactly one directed edge. We consider intrinsic linking and knotting in tournaments, and study the minimum number of vertices required for a tournament to have various intrinsic linking or knotting properties. We produce the following bounds: intrinsically linked ([Formula: see text]), intrinsically knotted ([Formula: see text]), intrinsically 3-linked ([Formula: see text]), intrinsically 4-linked ([Formula: see text]), intrinsically 5-linked ([Formula: see text]), intrinsically [Formula: see text]-linked ([Formula: see text]), intrinsically linked with knotted components ([Formula: see text]), and the disjoint linking property ([Formula: see text]). We also introduce the consistency gap, which measures the difference in the order of a graph required for intrinsic [Formula: see text]-linking in tournaments versus undirected graphs. We conjecture the consistency gap to be nondecreasing in [Formula: see text], and provide an upper bound at each [Formula: see text].


10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.


Author(s):  
D. K. Skilton

AbstractAn eulerian chain in a directed graph is a continuous directed route which traces every arc of the digraph exactly once. Such a route may be finite or infinite, and may have 0, 1 or 2 end vertices. For each kind of eulerian chain, there is a characterization of those diagraphs possessing such a route. In this survey paper we strealine these characterizations, and then synthesize them into a single description of all digraphs having some eulerian chain. Similar work has been done for eulerian chains in undirected graphs, so we are able to compare corresponding results for graphs and digraphs.


1992 ◽  
Vol 29 (3) ◽  
pp. 745-749 ◽  
Author(s):  
F. Matúš

The dependence of coincidence of the global, local and pairwise Markov properties on the underlying undirected graph is examined. The pairs of these properties are found to be equivalent for graphs with some small excluded subgraphs. Probabilistic representations of the corresponding conditional independence structures are discussed.


2018 ◽  
Vol 61 (4) ◽  
pp. 848-864 ◽  
Author(s):  
Simon Schmidt ◽  
Moritz Weber

AbstractThe study of graph C*-algebras has a long history in operator algebras. Surprisingly, their quantum symmetries have not yet been computed. We close this gap by proving that the quantum automorphism group of a finite, directed graph without multiple edges acts maximally on the corresponding graph C*-algebra. This shows that the quantum symmetry of a graph coincides with the quantum symmetry of the graph C*-algebra. In our result, we use the definition of quantum automorphism groups of graphs as given by Banica in 2005. Note that Bichon gave a different definition in 2003; our action is inspired from his work. We review and compare these two definitions and we give a complete table of quantum automorphism groups (with respect to either of the two definitions) for undirected graphs on four vertices.


10.37236/1994 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Rani Hod ◽  
Marcin Krzywkowski

A team of $n$ players plays the following game. After a strategy session, each player is randomly fitted with a blue or red hat. Then, without further communication, everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. Visibility is defined by a directed graph; that is, vertices correspond to players, and a player can see each player to whom he is connected by an arc. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The team aims to maximize the probability of a win, and this maximum is called the hat number of the graph.Previous works focused on the hat problem on complete graphs and on undirected graphs. Some cases were solved, e.g., complete graphs of certain orders, trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat number of any graph is equal to the hat number of its maximum clique.We show that the conjecture does not hold for directed graphs. Moreover, for every value of the maximum clique size, we provide a tight characterization of the range of possible values of the hat number. We construct families of directed graphs with a fixed clique number the hat number of which is asymptotically optimal. We also determine the hat number of tournaments to be one half.


10.37236/270 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Bryan Shader ◽  
Wasin So

An oriented graph $G^{\sigma}$ is a simple undirected graph $G$ with an orientation $\sigma$, which assigns to each edge a direction so that $G^{\sigma}$ becomes a directed graph. $G$ is called the underlying graph of $G^{\sigma}$, and we denote by $Sp(G)$ the adjacency spectrum of $G$. Skew-adjacency matrix $S( G^{\sigma} )$ of $G^{\sigma}$ is introduced, and its spectrum $Sp_S( G^{\sigma} )$ is called the skew-spectrum of $G^{\sigma}$. The relationship between $Sp_S( G^{\sigma} )$ and $Sp(G)$ is studied. In particular, we prove that (i) $Sp_S( G^{\sigma} ) = {\bf i} Sp(G)$ for some orientation $\sigma$ if and only if $G$ is bipartite, (ii) $Sp_S(G^{\sigma}) = {\bf i} Sp(G)$ for any orientation $\sigma$ if and only if $G$ is a forest, where ${\bf i}=\sqrt{-1}$.


1970 ◽  
Vol 13 (3) ◽  
pp. 371-374 ◽  
Author(s):  
C. E. Haff ◽  
U. S. R. Murty ◽  
R. C. Wilton

Let (P, ≥) be a p.o. set. The basis graph of (P, ≥) is defined to be the directed graph whose vertex set is P and in which the ordered pair 〈a, b〉 is an edge if and only if b covers a in (P, ≥).Let D be a directed graph. All graphs considered in this note are finite and are free of loops and multiple edges.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550088 ◽  
Author(s):  
Csaba Schneider ◽  
Ana C. Silva

Given a finite field, one can form a directed graph using the field elements as vertices and connecting two vertices if their difference lies in a fixed subgroup of the multiplicative group. If -1 is contained in this fixed subgroup, then we obtain an undirected graph that is referred to as a generalized Paley graph. In this paper, we study generalized Paley graphs whose clique and chromatic numbers coincide and link this theory to the study of the synchronization property in 1-dimensional primitive affine permutation groups.


Sign in / Sign up

Export Citation Format

Share Document