scholarly journals Compensating method of the height anomalies for ultra-high Earth's gravity field model

Author(s):  
Qingwu Meng ◽  
Jianguang Qu ◽  
Xiuhai Li ◽  
Weicheng Zhang ◽  
Xianglai Meng ◽  
...  
2017 ◽  
Vol 97 (1) ◽  
pp. 75-94
Author(s):  
Meng Qingwu ◽  
Qu Jianguang ◽  
Li Xiuhai ◽  
Zhang Weicheng ◽  
Meng Xianglai ◽  
...  

Engineering ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 860-878
Author(s):  
Wei Liang ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shengjun Zhang ◽  
Yongqi Zhao

2000 ◽  
Vol 27 (22) ◽  
pp. 3611-3614 ◽  
Author(s):  
Richard Biancale ◽  
Georges Balmino ◽  
Jean-Michel Lemoine ◽  
Jean-Charles Marty ◽  
Bernard Moynot ◽  
...  

2012 ◽  
Vol 170-173 ◽  
pp. 2935-2939
Author(s):  
Ya Hong Zhao ◽  
Li Hua Zhang ◽  
Jin Xing Wang

GPS technology has penetrated into all fields of surveying and mapping disciplines,and has been widely used in leveling measurement .By studying the feasibility of the refining of region quasi-geoid based on the existing quasi-geoid,this paper shows a new method which is a combination of the Earth's gravity field model and the GPS leveling fitting method to determine the region quasi-geoid and provide the specific ideas and calculation steps and do analysis and discussion about the feasibility and superiority of this method using actual data.This new method makes full use of the advantages of the high resolution of the gravity geoid and the high-precision of the GPS geoid to realize the complementary strengths.


2012 ◽  
Vol 329-330 ◽  
pp. 22-30 ◽  
Author(s):  
C. Hirt ◽  
W.E. Featherstone

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
P. Zingerle ◽  
R. Pail ◽  
T. Gruber ◽  
X. Oikonomidou

2020 ◽  
Vol 222 (1) ◽  
pp. 661-677
Author(s):  
Hao Zhou ◽  
Zebing Zhou ◽  
Zhicai Luo ◽  
Kang Wang ◽  
Min Wei

SUMMARY The goal of this contribution is to investigate the expected improvement of temporal gravity field determination via a couple of high-low satellite-to-satellite tracking (HLSST) missions. The simulation system is firstly validated by determining monthly gravity field models within situ GRACE GPS tracking data. The general consistency between the retrieved solutions and those developed by other official agencies indicates the good performance of our software. A 5-yr full-scale simulation is then performed using the full error sources including all error components. Analysis of each error component indicates that orbit error is the main contributor to the overall HLSST-derived gravity field model error. The noise level of monthly solution is therefore expected to reduce 90 per cent in terms of RMSE over ocean when the orbit accuracy improves for a magnitude of one order. As for the current HLSST mission consisting of a current GNSS receiver and an accelerometer (10−10 and 10−9 m s–2 noise for sensitive and non-sensitive axes), it is expected to observe monthly (or weekly) gravity solution at the spatial resolution of about 1300 km (or 2000 km). As for satellite constellations, a significant improvement is expected by adding the second satellite with the inclination of 70° and the third satellite with the inclination of 50°. The noise reduction in terms of cumulative geoid height error is approximately 51 per cent (or 62 per cent) when the observations of two (or three) HLSST missions are used. Moreover, the accuracy of weekly solution is expected to improve 40–70 per cent (or 27–59 per cent) for three (or two) HLSST missions when compared to one HLSST mission. Due to the low financial costs, it is worthy to build a satellite constellation of HLSST missions to fill the possible gaps between the dedicated temporal gravity field detecting missions.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ignazio Ciufolini ◽  
Antonio Paolozzi ◽  
Erricos C. Pavlis ◽  
Giampiero Sindoni ◽  
John Ries ◽  
...  

Abstract We report the improved test of frame-dragging, an intriguing phenomenon predicted by Einstein’s General Relativity, obtained using 7 years of Satellite Laser Ranging (SLR) data of the satellite LARES (ASI, 2012) and 26 years of SLR data of LAGEOS (NASA, 1976) and LAGEOS 2 (ASI and NASA, 1992). We used the static part and temporal variations of the Earth gravity field obtained by the space geodesy mission GRACE (NASA and DLR) and in particular the static Earth’s gravity field model GGM05S augmented by a model for the 7-day temporal variations of the lowest degree Earth spherical harmonics. We used the orbital estimator GEODYN (NASA). We measured frame-dragging to be equal to $$0.9910 \pm 0.02$$0.9910±0.02, where 1 is the theoretical prediction of General Relativity normalized to its frame-dragging value and $$\pm 0.02$$±0.02 is the estimated systematic error due to modelling errors in the orbital perturbations, mainly due to the errors in the Earth’s gravity field determination. Therefore, our measurement confirms the prediction of General Relativity for frame-dragging with a few percent uncertainty.


Radio Science ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Q. Liu ◽  
F. Kikuchi ◽  
K. Matsumoto ◽  
S. Goossens ◽  
H. Hanada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document