The European Physical Journal C
Latest Publications


TOTAL DOCUMENTS

13651
(FIVE YEARS 2357)

H-INDEX

152
(FIVE YEARS 12)

Published By Springer-Verlag

1434-6052, 1434-6044

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Xin Jiang ◽  
Peng Wang ◽  
Houwen Wu ◽  
Haitang Yang


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Thomas Colas ◽  
Julien Grain ◽  
Vincent Vennin

AbstractWe construct the four-mode squeezed states and study their physical properties. These states describe two linearly-coupled quantum scalar fields, which makes them physically relevant in various contexts such as cosmology. They are shown to generalise the usual two-mode squeezed states of single-field systems, with additional transfers of quanta between the fields. To build them in the Fock space, we use the symplectic structure of the phase space. For this reason, we first present a pedagogical analysis of the symplectic group $$\mathrm {Sp}(4,{\mathbb {R}})$$ Sp ( 4 , R ) and its Lie algebra, from which we construct the four-mode squeezed states and discuss their structure. We also study the reduced single-field system obtained by tracing out one of the two fields. This procedure being easier in the phase space, it motivates the use of the Wigner function which we introduce as an alternative description of the state. It allows us to discuss environmental effects in the case of linear interactions. In particular, we find that there is always a range of interaction coupling for which decoherence occurs without substantially affecting the power spectra (hence the observables) of the system.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractDuring LHC Run 2 (2015–2018) the ATLAS Level-1 topological trigger allowed efficient data-taking by the ATLAS experiment at luminosities up to 2.1$$\times $$ × 10$$^{34}$$ 34  cm$$^{-2}$$ - 2 s$$^{-1}$$ - 1 , which exceeds the design value by a factor of two. The system was installed in 2016 and operated in 2017 and 2018. It uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, $$\tau $$ τ -leptons, muons and the missing transverse energy. It allowed to significantly improve the background event rejection and signal event acceptance, in particular for Higgs and B-physics processes.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Diogo Buarque Franzosi ◽  
Giacomo Cacciapaglia ◽  
Xabier Cid Vidal ◽  
Gabriele Ferretti ◽  
Thomas Flacke ◽  
...  

AbstractWe study the possibility of observing a light pseudo-scalar a at LHCb. We target the mass region $$2.5\,\mathrm{GeV}\lesssim m_a\lesssim 60\,\mathrm{GeV}$$ 2.5 GeV ≲ m a ≲ 60 GeV and various decay channels, some of which have never been considered before: muon pairs, tau pairs, D meson pairs, and di-photon. We interpret the results in the context of models of 4D Composite Higgs and Partial Compositeness in particular.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Markus Q. Huber ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
K. D. J. André ◽  
L. Aperio Bella ◽  
N. Armesto ◽  
S. A. Bogacz ◽  
D. Britzger ◽  
...  

AbstractNovel considerations are presented on the physics, apparatus and accelerator designs for a future, luminous, energy frontier electron-hadron (eh) scattering experiment at the LHC in the thirties for which key physics topics and their relation to the hadron-hadron HL-LHC physics programme are discussed. Demands are derived set by these physics topics on the design of the LHeC detector, a corresponding update of which is described. Optimisations on the accelerator design, especially the interaction region (IR), are presented. Initial accelerator considerations indicate that a common IR is possible to be built which alternately could serve eh and hh collisions while other experiments would stay on hh in either condition. A forward-backward symmetrised option of the LHeC detector is sketched which would permit extending the LHeC physics programme to also include aspects of hadron-hadron physics. The vision of a joint eh and hh physics experiment is shown to open new prospects for solving fundamental problems of high energy heavy-ion physics including the partonic structure of nuclei and the emergence of hydrodynamics in quantum field theory while the genuine TeV scale DIS physics is of unprecedented rank.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
K. Nobleson ◽  
Amna Ali ◽  
Sarmistha Banik

AbstractIn this work, we investigate the structure and properties of neutron stars in $$R^2$$ R 2 gravity using two approaches, viz: the perturbative and non-perturbative methods. For this purpose, we consider NS with several nucleonic, as well as strange EoS generated in the framework of relativistic mean field models. The strange particles in the core of NS are in the form of $$\Lambda $$ Λ hyperons and quarks, in addition to the nucleons and leptons. In both the approaches, we obtain mass–radius relation for a wide range of values of the extra degree of freedom parameter a arising due to modification of gravity at large scales. The mass–radius relation of the chosen equation of states lies well within the observational limit in the case of GR. We identify the changes in the property of neutron star in the background of f(R) gravity, and compare the results in both the methods. We also identify the best suited method to study the modified gravity using the astrophysical observations.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
M. I. Abdulhamid ◽  
M. A. Al-Mashad ◽  
A. Bermudez Martinez ◽  
G. Bonomelli ◽  
I. Bubanja ◽  
...  

AbstractThe azimuthal correlation, $$\Delta \phi _{12}$$ Δ ϕ 12 , of high transverse momentum jets in pp collisions at $$\sqrt{s}=13$$ s = 13  TeV is studied by applying PB-TMD distributions to NLO calculations via MCatNLO together with the PB-TMD parton shower. A very good description of the cross section as a function of $$\Delta \phi _{12}$$ Δ ϕ 12 is observed. In the back-to-back region of $${\Delta \phi _{12}}\rightarrow \pi $$ Δ ϕ 12 → π , a very good agreement is observed with the PB-TMD Set 2 distributions while significant deviations are obtained with the PB-TMD Set 1 distributions. Set 1 uses the evolution scale while Set 2 uses transverse momentum as an argument in $$\alpha _\mathrm {s}$$ α s , and the above observation therefore confirms the importance of an appropriate soft-gluon coupling in angular ordered parton evolution. The total uncertainties of the predictions are dominated by the scale uncertainties of the matrix element, while the uncertainties coming from the PB-TMDs and the corresponding PB-TMD shower are very small. The $$\Delta \phi _{12}$$ Δ ϕ 12 measurements are also compared with predictions using MCatNLO together Pythia8, illustrating the importance of details of the parton shower evolution.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Roldao da Rocha

AbstractGravitational decoupled compact polytropic hybrid stars are here addressed in generalized Horndeski scalar-tensor gravity. Additional physical properties of hybrid stars are scrutinized and discussed in the gravitational decoupling setup. The asymptotic value of the mass function, the compactness, and the effective radius of gravitational decoupled hybrid stars are studied for both cases of a bosonic and a fermionic prevalent core. These quantities are presented and discussed as functions of Horndeski parameters, the decoupling parameter, the adiabatic index, and the polytropic constant. Important corrections to general relativity and generalized Horndeski scalar-tensor gravity, induced by the gravitational decoupling, comply with available observational data. Particular cases involving white dwarfs, boson stellar configurations, neutron stars, and Einstein–Klein–Gordon solutions, formulated in the gravitational decoupling context, are also scrutinized.



2022 ◽  
Vol 82 (1) ◽  
Author(s):  
S. Aiello ◽  
A. Albert ◽  
S. Alves Garre ◽  
Z. Aly ◽  
A. Ambrosone ◽  
...  

AbstractThe next generation of water Cherenkov neutrino telescopes in the Mediterranean Sea are under construction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection threshold which allows to collect atmospheric neutrinos to study flavour oscillation. This paper reports the KM3NeT/ORCA sensitivity to this phenomenon. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4$$\sigma $$ σ if the true ordering is normal and 2.3$$\sigma $$ σ if inverted, after 3 years of data taking. The precision to measure $$\varDelta m^2_{32}$$ Δ m 32 2 and $$\theta _{23}$$ θ 23 were also estimated and found to be $$85 . 10^{-6}~{\mathrm{eV}^{2}}$$ 85 . 10 - 6 eV 2 and $$(^{+1.9}_{-3.1})^{\circ }$$ ( - 3.1 + 1.9 ) ∘ for normal neutrino mass ordering and, $$75 . 10^{-6}~{\mathrm{eV}^{2}}$$ 75 . 10 - 6 eV 2 and $$(^{+2.0}_{-7.0})^{\circ }$$ ( - 7.0 + 2.0 ) ∘ for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude "Equation missing" event rate variations larger than 20% at $$3\sigma $$ 3 σ level.



Sign in / Sign up

Export Citation Format

Share Document