scholarly journals Complete Monotonicity Properties of a Function Involving the Polygamma Function

2018 ◽  
Vol 1(2018) (1) ◽  
pp. 10-15
Author(s):  
Kwara Nantomah ◽  
2013 ◽  
Vol 219 (21) ◽  
pp. 10538-10547 ◽  
Author(s):  
V.B. Krasniqi ◽  
H.M. Srivastava ◽  
S.S. Dragomir

2015 ◽  
Vol 65 (1) ◽  
Author(s):  
Bai-Ni Guo ◽  
Feng Qi ◽  
Jiao-Lian Zhao ◽  
Qiu-Ming Luo

AbstractIn the paper, the authors review some inequalities and the (logarithmically) complete monotonicity concerning the gamma and polygamma functions and, more importantly, present a sharp double inequality for bounding the polygamma function by rational functions.


Author(s):  
Li Ai-Jun ◽  
Zhao Wei-Zhen ◽  
Chen Chao-Ping

Define F(x) = ?(mx) xm-1?m(x) and G(x)- ?(mx) ?m(x). for x > 0 and m = 2 3,?. In this paper, we consider the logarithmically complete monotonicity properties for the function F and 1/G, and we prove that the function ?(x) = ? n i=1 ?(mxi + 1) ?m (x1 + 1) is strictly Schur-convex (-1/m,+?)n.


2007 ◽  
Vol 38 (4) ◽  
pp. 313-322
Author(s):  
Ai-Jun Li ◽  
Chao-Ping Chen

n this paper, the logarithmically complete monotonic properties of the functions $ \prod_{i=1}^{n}\frac{\Gamma(x-a_i)}{\Gamma(x-b_i)} $ ,$ \Gamma(x)^{\alpha}\Gamma\Big(x-\sum_{i=1}^n a_i\Big)/\prod_{i=1}^{n}\Gamma(x-a_i) $, and $ x^r(e/x)^x \Gamma(x) $ are obtained. Some characterizations of the gamma function are deduced.


2018 ◽  
Vol 21 (5) ◽  
pp. 1156-1169 ◽  
Author(s):  
Francesco Mainardi ◽  
Enrico Masina

Abstract In this paper we survey the properties of the Schelkunoff modification of the Exponential integral and we generalize it with the Mittag-Leffler function. So doing we get a new special function (as far as we know) that may be relevant in linear viscoelasticity because of its complete monotonicity properties in the time domain. We also consider the generalized sine and cosine integral functions.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Tie-Hong Zhao ◽  
Yu-Ming Chu ◽  
Hua Wang

We prove that the functionfα,β(x)=Γβ(x+α)/xαΓ(βx)is strictly logarithmically completely monotonic on(0,∞)if(α,β)∈{( α,β):1/α≤β≤1, α≠1}∪{(α,β):0<β≤1,φ1(α,β)≥0,φ2(α,β)≥0}and[fα,β(x)]-1is strictly logarithmically completely monotonic on(0,∞)if(α,β)∈{(α,β):0<α≤1/2,0<β≤1}∪{(α,β):1≤β≤1/α≤2,α≠1}∪{(α,β):1/2≤α<1,β≥1/(1-α)}, whereφ1(α,β)=(α2+α-1)β2+(2α2-3α+1)β-αandφ2(α,β)=(α-1)β2+(2α2-5α+2)β-1.


Sign in / Sign up

Export Citation Format

Share Document