scholarly journals Interactive Content Based Image Retrieval using Multiuser Feedback

2017 ◽  
Vol 1 (4) ◽  
pp. 165
Author(s):  
M. Premkumar ◽  
R. Sowmya

Retrieving images from large databases becomes a difficult task. Content based image retrieval (CBIR) deals with retrieval of images based on their similarities in content (features) between the query image and the target image. But the similarities do not vary equally in all directions of feature space. Further the CBIR efforts have relatively ignored the two distinct characteristics of the CBIR systems: 1) The gap between high level concepts and low level features; 2) Subjectivity of human perception of visual content. Hence an interactive technique called the relevance feedback technique was used. These techniques used user’s feedback about the retrieved images to reformulate the query which retrieves more relevant images during next iterations. But those relevance feedback techniques are called hard relevance feedback techniques as they use only two level user annotation. It was very difficult for the user to give feedback for the retrieved images whether they are relevant to the query image or not. To better capture user’s intention soft relevance feedback technique is proposed. This technique uses multilevel user annotation. But it makes use of only single user feedback. Hence Soft association rule mining technique is also proposed to infer image relevance from the collective feedback. Feedbacks from multiple users are used to retrieve more relevant images improving the performance of the system. Here soft relevance feedback and association rule mining techniques are combined. During first iteration prior association rules about the given query image are retrieved to find out the relevant images and during next iteration the feedbacks are inserted into the database and relevance feedback techniques are activated to retrieve more relevant images. The number of association rules is kept minimum based on redundancy detection.

Author(s):  
Mirko Boettcher ◽  
Georg Ruß ◽  
Detlef Nauck ◽  
Rudolf Kruse

Association rule mining typically produces large numbers of rules, thereby creating a second-order data mining problem: which of the generated rules are the most interesting? And: should interestingness be measured objectively or subjectively? To tackle the amount of rules that are created during the mining step, the authors propose the combination of two novel ideas: first, there is rule change mining, which is a novel extension to standard association rule mining which generates potentially interesting time-dependent features for an association rule. It does not require changes in the existing rule mining algorithms and can therefore be applied during post-mining of association rules. Second, the authors make use of the existing textual description of a rule and those newly derived objective features and combine them with a novel approach towards subjective interestingness by using relevance feedback methods from information retrieval. The combination of these two new approaches yields a powerful, intuitive way of exploring the typically vast set of association rules. It is able to combine objective and subjective measures of interestingness and will incorporate user feedback. Hence, it increases the probability of finding the most interesting rules given a large set of association rules.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhicong Kou ◽  
Lifeng Xi

An effective data mining method to automatically extract association rules between manufacturing capabilities and product features from the available historical data is essential for an efficient and cost-effective product development and production. This paper proposes a new binary particle swarm optimization- (BPSO-) based association rule mining (BPSO-ARM) method for discovering the hidden relationships between machine capabilities and product features. In particular, BPSO-ARM does not need to predefine thresholds of minimum support and confidence, which improves its applicability in real-world industrial cases. Moreover, a novel overlapping measure indication is further proposed to eliminate those lower quality rules to further improve the applicability of BPSO-ARM. The effectiveness of BPSO-ARM is demonstrated on a benchmark case and an industrial case about the automotive part manufacturing. The performance comparison indicates that BPSO-ARM outperforms other regular methods (e.g., Apriori) for ARM. The experimental results indicate that BPSO-ARM is capable of discovering important association rules between machine capabilities and product features. This will help support planners and engineers for the new product design and manufacturing.


Semantic Web ◽  
2013 ◽  
pp. 76-96
Author(s):  
Luca Cagliero ◽  
Tania Cerquitelli ◽  
Paolo Garza

This paper presents a novel semi-automatic approach to construct conceptual ontologies over structured data by exploiting both the schema and content of the input dataset. It effectively combines two well-founded database and data mining techniques, i.e., functional dependency discovery and association rule mining, to support domain experts in the construction of meaningful ontologies, tailored to the analyzed data, by using Description Logic (DL). To this aim, functional dependencies are first discovered to highlight valuable conceptual relationships among attributes of the data schema (i.e., among concepts). The set of discovered correlations effectively support analysts in the assertion of the Tbox ontological statements (i.e., the statements involving shared data conceptualizations and their relationships). Then, the analyst-validated dependencies are exploited to drive the association rule mining process. Association rules represent relevant and hidden correlations among data content and they are used to provide valuable knowledge at the instance level. The pushing of functional dependency constraints into the rule mining process allows analysts to look into and exploit only the most significant data item recurrences in the assertion of the Abox ontological statements (i.e., the statements involving concept instances and their relationships).


Author(s):  
Carson Kai-Sang Leung

The problem of association rule mining was introduced in 1993 (Agrawal et al., 1993). Since then, it has been the subject of numerous studies. Most of these studies focused on either performance issues or functionality issues. The former considered how to compute association rules efficiently, whereas the latter considered what kinds of rules to compute. Examples of the former include the Apriori-based mining framework (Agrawal & Srikant, 1994), its performance enhancements (Park et al., 1997; Leung et al., 2002), and the tree-based mining framework (Han et al., 2000); examples of the latter include extensions of the initial notion of association rules to other rules such as dependence rules (Silverstein et al., 1998) and ratio rules (Korn et al., 1998). In general, most of these studies basically considered the data mining exercise in isolation. They did not explore how data mining can interact with the human user, which is a key component in the broader picture of knowledge discovery in databases. Hence, they provided little or no support for user focus. Consequently, the user usually needs to wait for a long period of time to get numerous association rules, out of which only a small fraction may be interesting to the user. In other words, the user often incurs a high computational cost that is disproportionate to what he wants to get. This calls for constraint-based association rule mining.


Author(s):  
Ling Zhou ◽  
Stephen Yau

Association rule mining among frequent items has been extensively studied in data mining research. However, in recent years, there is an increasing demand for mining infrequent items (such as rare but expensive items). Since exploring interesting relationships among infrequent items has not been discussed much in the literature, in this chapter, the authors propose two simple, practical and effective schemes to mine association rules among rare items. Their algorithms can also be applied to frequent items with bounded length. Experiments are performed on the well-known IBM synthetic database. The authors’ schemes compare favorably to Apriori and FP-growth under the situation being evaluated. In addition, they explore quantitative association rule mining in transactional databases among infrequent items by associating quantities of items: some interesting examples are drawn to illustrate the significance of such mining.


Author(s):  
Carson K.-S. Leung ◽  
Fan Jiang ◽  
Edson M. Dela Cruz ◽  
Vijay Sekar Elango

Collaborative filtering uses data mining and analysis to develop a system that helps users make appropriate decisions in real-life applications by removing redundant information and providing valuable to information users. Data mining aims to extract from data the implicit, previously unknown and potentially useful information such as association rules that reveals relationships between frequently co-occurring patterns in antecedent and consequent parts of association rules. This chapter presents an algorithm called CF-Miner for collaborative filtering with association rule miner. The CF-Miner algorithm first constructs bitwise data structures to capture important contents in the data. It then finds frequent patterns from the bitwise structures. Based on the mined frequent patterns, the algorithm forms association rules. Finally, the algorithm ranks the mined association rules to recommend appropriate merchandise products, goods or services to users. Evaluation results show the effectiveness of CF-Miner in using association rule mining in collaborative filtering.


2012 ◽  
Vol 3 (3) ◽  
pp. 64-77 ◽  
Author(s):  
Satya Ranjan Dash ◽  
Satchidananda Dehuri ◽  
Uma kant Sahoo

This paper is two folded. In first fold, the authors have illustrated the interplay among fuzzy, rough, and soft set theory and their way of handling vagueness. In second fold, the authors have studied their individual strengths to discover association rules. The performance of these three approaches in discovering comprehensible rules are presented.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450004 ◽  
Author(s):  
Ibrahim S. Alwatban ◽  
Ahmed Z. Emam

In recent years, a new research area known as privacy preserving data mining (PPDM) has emerged and captured the attention of many researchers interested in preventing the privacy violations that may occur during data mining. In this paper, we provide a review of studies on PPDM in the context of association rules (PPARM). This paper systematically defines the scope of this survey and determines the PPARM models. The problems of each model are formally described, and we discuss the relevant approaches, techniques and algorithms that have been proposed in the literature. A profile of each model and the accompanying algorithms are provided with a comparison of the PPARM models.


2010 ◽  
Vol 108-111 ◽  
pp. 50-56 ◽  
Author(s):  
Liang Zhong Shen

Due to the popularity of knowledge discovery and data mining, in practice as well as among academic and corporate professionals, association rule mining is receiving increasing attention. The technology of data mining is applied in analyzing data in databases. This paper puts forward a new method which is suit to design the distributed databases.


Sign in / Sign up

Export Citation Format

Share Document