scholarly journals Site Frequency Spectrum of the Bolthausen-Sznitman Coalescent

Author(s):  
Götz Kersting ◽  
Arno Siri-Jégousse ◽  
Alejandro H. Wences
2017 ◽  
Author(s):  
Berit Lindum Waltoft ◽  
Asger Hobolth

AbstractThe variability in population size is a key quantity for understanding the evolutionary history of a species. We present a new method, CubSFS, for estimating the changes in population size of a panmictic population from the site frequency spectrum. First, we provide a straightforward proof for the expression of the expected site frequency spectrum depending only on the population size. Our derivation is based on an eigenvalue decomposition of the instantaneous coalescent rate matrix. Second, we solve the inverse problem of determining the variability in population size from an observed SFS. Our solution is based on a cubic spline for the population size. The cubic spline is determined by minimizing the weighted average of two terms, namely (i) the goodness of fit to the SFS, and (ii) a penalty term based on the smoothness of the changes. The weight is determined by cross-validation. The new method is validated on simulated demographic histories and applied on data from nine different human populations.


2018 ◽  
Author(s):  
Christelle Fraïsse ◽  
Camille Roux ◽  
Pierre-Alexandre Gagnaire ◽  
Jonathan Romiguier ◽  
Nicolas Faivre ◽  
...  

AbstractGenome-scale diversity data are increasingly available in a variety of biological systems, and can be used to reconstruct the past evolutionary history of species divergence. However, extracting the full demographic information from these data is not trivial, and requires inferential methods that account for the diversity of coalescent histories throughout the genome. Here, we evaluate the potential and limitations of one such approach. We reexamine a well-known system of mussel sister species, using the joint site frequency spectrum (jSFS) of synonymous mutations computed either from exome capture or RNA-seq, in an Approximate Bayesian Computation (ABC) framework. We first assess the best sampling strategy (number of: individuals, loci, and bins in the jSFS), and show that model selection is robust to variation in the number of individuals and loci. In contrast, different binning choices when summarizing the joint site frequency spectrum, strongly affect the results: including classes of low and high frequency shared polymorphisms can more effectively reveal recent migration events. We then take advantage of the flexibility of ABC to compare more realistic models of speciation, including variation in migration rates through time (i.e. periodic connectivity) and across genes (i.e. genome-wide heterogeneity in migration rates). We show that these models were consistently selected as the most probable, suggesting that mussels have experienced a complex history of gene flow during divergence and that the species boundary is semi-permeable. Our work provides a comprehensive evaluation of ABC demographic inference in mussels based on the coding site frequency spectrum, and supplies guidelines for employing different sequencing techniques and sampling strategies. We emphasize, perhaps surprisingly, that inferences are less limited by the volume of data, than by the way in which they are analyzed.


2019 ◽  
Vol 36 (12) ◽  
pp. 2906-2921 ◽  
Author(s):  
Austin H Patton ◽  
Mark J Margres ◽  
Amanda R Stahlke ◽  
Sarah Hendricks ◽  
Kevin Lewallen ◽  
...  

Abstract Reconstructing species’ demographic histories is a central focus of molecular ecology and evolution. Recently, an expanding suite of methods leveraging either the sequentially Markovian coalescent (SMC) or the site-frequency spectrum has been developed to reconstruct population size histories from genomic sequence data. However, few studies have investigated the robustness of these methods to genome assemblies of varying quality. In this study, we first present an improved genome assembly for the Tasmanian devil using the Chicago library method. Compared with the original reference genome, our new assembly reduces the number of scaffolds (from 35,975 to 10,010) and increases the scaffold N90 (from 0.101 to 2.164 Mb). Second, we assess the performance of four contemporary genomic methods for inferring population size history (PSMC, MSMC, SMC++, Stairway Plot), using the two devil genome assemblies as well as simulated, artificially fragmented genomes that approximate the hypothesized demographic history of Tasmanian devils. We demonstrate that each method is robust to assembly quality, producing similar estimates of Ne when simulated genomes were fragmented into up to 5,000 scaffolds. Overall, methods reliant on the SMC are most reliable between ∼300 generations before present (gbp) and 100 kgbp, whereas methods exclusively reliant on the site-frequency spectrum are most reliable between the present and 30 gbp. Our results suggest that when used in concert, genomic methods for reconstructing species’ effective population size histories 1) can be applied to nonmodel organisms without highly contiguous reference genomes, and 2) are capable of detecting independently documented effects of historical geological events.


Genetics ◽  
2016 ◽  
Vol 202 (4) ◽  
pp. 1549-1561 ◽  
Author(s):  
Jeffrey P. Spence ◽  
John A. Kamm ◽  
Yun S. Song

Genetics ◽  
2013 ◽  
Vol 195 (1) ◽  
pp. 181-193 ◽  
Author(s):  
Roy Ronen ◽  
Nitin Udpa ◽  
Eran Halperin ◽  
Vineet Bafna

Sign in / Sign up

Export Citation Format

Share Document