approximate bayesian
Recently Published Documents


TOTAL DOCUMENTS

905
(FIVE YEARS 352)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-24
Author(s):  
Sourabh Kulkarni ◽  
Mario Michael Krell ◽  
Seth Nabarro ◽  
Csaba Andras Moritz

Epidemiology models are central to understanding and controlling large-scale pandemics. Several epidemiology models require simulation-based inference such as Approximate Bayesian Computation (ABC) to fit their parameters to observations. ABC inference is highly amenable to efficient hardware acceleration. In this work, we develop parallel ABC inference of a stochastic epidemiology model for COVID-19. The statistical inference framework is implemented and compared on Intel’s Xeon CPU, NVIDIA’s Tesla V100 GPU, Google’s V2 Tensor Processing Unit (TPU), and the Graphcore’s Mk1 Intelligence Processing Unit (IPU), and the results are discussed in the context of their computational architectures. Results show that TPUs are 3×, GPUs are 4×, and IPUs are 30× faster than Xeon CPUs. Extensive performance analysis indicates that the difference between IPU and GPU can be attributed to higher communication bandwidth, closeness of memory to compute, and higher compute power in the IPU. The proposed framework scales across 16 IPUs, with scaling overhead not exceeding 8% for the experiments performed. We present an example of our framework in practice, performing inference on the epidemiology model across three countries and giving a brief overview of the results.


2022 ◽  
Author(s):  
Christopher M Pooley ◽  
Andrea B Doeschl-Wilson ◽  
Glenn Marion

Well parameterised epidemiological models including accurate representation of contacts, are fundamental to controlling epidemics. However, age-stratified contacts are typically estimated from pre-pandemic/peace-time surveys, even though interventions and public response likely alter contacts. Here we fit age-stratified models, including re-estimation of relative contact rates between age-classes, to public data describing the 2020-21 COVID-19 outbreak in England. This data includes age-stratified population size, cases, deaths, hospital admissions, and results from the Coronavirus Infection Survey (almost 9000 observations in all). Fitting stochastic compartmental models to such detailed data is extremely challenging, especially considering the large number of model parameters being estimated (over 150). An efficient new inference algorithm ABC-MBP combining existing Approximate Bayesian Computation (ABC) methodology with model-based proposals (MBP) is applied. Modified contact rates are inferred alongside time-varying reproduction numbers that quantify changes in overall transmission due to pandemic response, and age-stratified proportions of asymptomatic cases, hospitalisation rates and deaths. These inferences are robust to a range of assumptions including the values of parameters that cannot be estimated from available data. ABC-MBP is shown to enable reliable joint analysis of complex epidemiological data yielding consistent parametrisation of dynamic transmission models that can inform data-driven public health policy and interventions.


Author(s):  
Clara Grazian ◽  
Luciana Dalla Valle ◽  
Brunero Liseo
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261813
Author(s):  
Alfredo Cortell-Nicolau ◽  
Oreto García-Puchol ◽  
María Barrera-Cruz ◽  
Daniel García-Rivero

In the present article we use geometric microliths (a specific type of arrowhead) and Approximate Bayesian Computation (ABC) in order to evaluate possible origin points and expansion routes for the Neolithic in the Iberian Peninsula. In order to do so, we divide the Iberian Peninsula in four areas (Ebro river, Catalan shores, Xúquer river and Guadalquivir river) and we sample the geometric microliths existing in the sites with the oldest radiocarbon dates for each zone. On this data, we perform a partial Mantel test with three matrices: geographic distance matrix, cultural distance matrix and chronological distance matrix. After this is done, we simulate a series of partial Mantel tests where we alter the chronological matrix by using an expansion model with randomised origin points, and using the distribution of the observed partial Mantel test’s results as a summary statistic within an Approximate Bayesian Computation-Sequential Monte-Carlo (ABC-SMC) algorithm framework. Our results point clearly to a Neolithic expansion route following the Northern Mediterranean, whilst the Southern Mediterranean route could also find support and should be further discussed. The most probable origin points focus on the Xúquer river area.


Author(s):  
A. Asensio Ramos ◽  
C. Díaz Baso ◽  
O. Kochukhov

2021 ◽  
Author(s):  
Leandro Duarte ◽  
Gabriel Nakamura ◽  
Vanderlei Debastiani ◽  
Renan Maestri ◽  
Maria Joao Veloso da Costa Ramos Pereira ◽  
...  

Ecologists often agree on the importance of macroevolution for niche-mediated distribution of biological diversity along environmental gradients. Yet, macroevolutionary diversification and dispersal in time and space generate uneven geographic distribution of phylogenetic pools, which affects the imprint let by macroevolution on local species pools. In this article we introduce an individual-based simulation approach coupled to Approximate Bayesian Computation (ABC) that allows to parameterize the adaptation rate of species niche positions along the evolution of a monophyletic lineage, and the intensity of dispersal limitation, associated with the distribution of biological diversity between assemblages potentially connected by dispersal (metacommunity). The analytical tool was implemented in an R package called mcfly. We evaluated the statistical performance of the analytical framework using simulated datasets, which confirmed the suitability of the analysis to estimate adaptation rate and dispersal limitation parameters. Further, we evaluated the role played by niche evolution and dispersal limitation on species diversity distribution of Phyllostomidae bats across the Neotropics. The framework proposed here shed light on the links between niche evolution, dispersal limitation and the distribution of biological diversity, and thereby improved our understanding of evolutionary imprints on ecological patterns. Perhaps more importantly, it offers new possibilities for solving the eco-evolutionary puzzle.


Sign in / Sign up

Export Citation Format

Share Document