approximate bayesian computation
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 197)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-24
Author(s):  
Sourabh Kulkarni ◽  
Mario Michael Krell ◽  
Seth Nabarro ◽  
Csaba Andras Moritz

Epidemiology models are central to understanding and controlling large-scale pandemics. Several epidemiology models require simulation-based inference such as Approximate Bayesian Computation (ABC) to fit their parameters to observations. ABC inference is highly amenable to efficient hardware acceleration. In this work, we develop parallel ABC inference of a stochastic epidemiology model for COVID-19. The statistical inference framework is implemented and compared on Intel’s Xeon CPU, NVIDIA’s Tesla V100 GPU, Google’s V2 Tensor Processing Unit (TPU), and the Graphcore’s Mk1 Intelligence Processing Unit (IPU), and the results are discussed in the context of their computational architectures. Results show that TPUs are 3×, GPUs are 4×, and IPUs are 30× faster than Xeon CPUs. Extensive performance analysis indicates that the difference between IPU and GPU can be attributed to higher communication bandwidth, closeness of memory to compute, and higher compute power in the IPU. The proposed framework scales across 16 IPUs, with scaling overhead not exceeding 8% for the experiments performed. We present an example of our framework in practice, performing inference on the epidemiology model across three countries and giving a brief overview of the results.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261813
Author(s):  
Alfredo Cortell-Nicolau ◽  
Oreto García-Puchol ◽  
María Barrera-Cruz ◽  
Daniel García-Rivero

In the present article we use geometric microliths (a specific type of arrowhead) and Approximate Bayesian Computation (ABC) in order to evaluate possible origin points and expansion routes for the Neolithic in the Iberian Peninsula. In order to do so, we divide the Iberian Peninsula in four areas (Ebro river, Catalan shores, Xúquer river and Guadalquivir river) and we sample the geometric microliths existing in the sites with the oldest radiocarbon dates for each zone. On this data, we perform a partial Mantel test with three matrices: geographic distance matrix, cultural distance matrix and chronological distance matrix. After this is done, we simulate a series of partial Mantel tests where we alter the chronological matrix by using an expansion model with randomised origin points, and using the distribution of the observed partial Mantel test’s results as a summary statistic within an Approximate Bayesian Computation-Sequential Monte-Carlo (ABC-SMC) algorithm framework. Our results point clearly to a Neolithic expansion route following the Northern Mediterranean, whilst the Southern Mediterranean route could also find support and should be further discussed. The most probable origin points focus on the Xúquer river area.


2021 ◽  
Vol 2021 (12) ◽  
pp. 013
Author(s):  
Luca Tortorelli ◽  
Malgorzata Siudek ◽  
Beatrice Moser ◽  
Tomasz Kacprzak ◽  
Pascale Berner ◽  
...  

Abstract Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band data. The aim is to improve the constraints on the spectral coefficients used to create the galaxy spectral energy distributions (SED) of the galaxy population model in Tortorelli et al. 2020. In that work, the model parameters were inferred from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data using Approximate Bayesian Computation (ABC). This led to stringent constraints on the B-band galaxy luminosity function parameters, but left the spectral coefficients only broadly constrained. To address that, we perform an ABC inference using CFHTLS and PAUS data. This is the first time our approach combining forward-modelling and ABC is applied simultaneously to multiple datasets. We test the results of the ABC inference by comparing the narrow-band magnitudes of the observed and simulated galaxies using Principal Component Analysis, finding a very good agreement. Furthermore, we prove the scientific potential of the constrained galaxy population model to provide realistic stellar population properties by measuring them with the SED fitting code CIGALE. We use CFHTLS broad-band and PAUS narrow-band photometry for a flux-limited (i < 22.5) sample of galaxies up to redshift z ∼ 0.8. We find that properties like stellar masses, star-formation rates, mass-weighted stellar ages and metallicities are in agreement within errors between observations and simulations. Overall, this work shows the ability of our galaxy population model to correctly forward-model a complex dataset such as PAUS and the ability to reproduce the diversity of galaxy properties at the redshift range spanned by CFHTLS and PAUS.


2021 ◽  
pp. 233-260
Author(s):  
Osvaldo A. Martin ◽  
Ravin Kumar ◽  
Junpeng Lao

2021 ◽  
Author(s):  
Zheng Li ◽  
Jie Zhou ◽  
Minzhi Gao ◽  
Wei Liang ◽  
Lu Dong

Background: Understanding speciation has long been a fundamental goal of evolutionary biology. It is widely accepted that speciation requires an interruption of gene flow to generate strong reproductive isolation between species, in which sexual selection may play an important role by generating and maintaining sexual dimorphism. The mechanism of how sexual selection operated in speciation with gene flow remains an open question and the subject of many research. Two species in genus Chrysolophus, Golden pheasant (C. pictus) and Lady Amherst's pheasant (C. amherstiae), which both exhibit significant plumage dichromatism, are currently parapatric in the southwest China with several hybrid recordings in field. Methods: In this research, we estimated the pattern of gene flow during the speciation of two pheasants using the Approximate Bayesian Computation (ABC) method based on the multiple genes data. With a new assembled de novo genome of Lady Amherst's pheasant and resequencing of widely distributed individuals, we reconstructed the demographic history of the two pheasants by pairwise sequentially Markovian coalescent (PSMC). Results: The results provide clear evidence that the gene flow between the two pheasants were consistent with the prediction of isolation with migration model for allopatric populations, indicating that there was long-term gene flow after the initially divergence (ca. 2.2 million years ago), and further support the secondary contact when included the parapatric populations since around 30 ka ongoing gene flow to now, which might be induced by the population expansion of the Golden pheasant in late Pleistocene. Conclusions: The results of the study support the scenario of speciation between Golden pheasant (C. pictus) and Lady Amherst's pheasant (C. amherstiae) with cycles of mixing-isolation-mixing due to the dynamics of natural selection and sexual selection in late Pleistocene that provide a good research system as evolutionary model to test reinforcement selection in speciation. Keywords: Golden pheasant (Chrysolophus pictus), Lady Amherst's pheasant (Chrysolophus amherstiae), speciation, gene flow, Approximate Bayesian Computation (ABC), Pairwise Sequentially Markovian coalescent (PSMC).


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2317
Author(s):  
Andrey Ageev ◽  
Cheng-Ruei Lee ◽  
Chau-Ti Ting ◽  
Roland Schafleitner ◽  
Eric Bishop-von Bishop-von Wettberg ◽  
...  

Flowering time is an important target for breeders in developing new varieties adapted to changing conditions. A new approach is proposed that uses Approximate Bayesian Computation with Differential Evolution to construct a pool of models for flowering time. The functions for daily progression of the plant from planting to flowering are obtained in analytic form and depend on daily values of climatic factors and genetic information. The resulting pool of models demonstrated high accuracy on the dataset. Day length, solar radiation and temperature had a large impact on the model accuracy, while the impact of precipitation was comparatively small and the impact of maximal temperature has the maximal variation. The model pool was used to investigate the behavior of accessions from the dataset in case of temperature increase by 0.05–6.00∘. The time to flowering changed differently for different accessions. The Pearson correlation coefficient between the SNP value and the change in time to flowering revealed weak but significant association of SNP7 with behavior of the accessions in warming climate conditions. The same SNP was found to have a considerable influence on model prediction with a permutation test. Our approach can help breeding programs harness genotypic and phenotypic diversity to more effectively produce varieties with a desired flowering time.


Sign in / Sign up

Export Citation Format

Share Document