Ammonium Formate

Keyword(s):  
2020 ◽  
Vol 17 (3) ◽  
pp. 211-215
Author(s):  
Da Chen ◽  
Xuan Wang ◽  
Runnan Wang ◽  
Yao Zhan ◽  
Xiaohan Peng ◽  
...  

The Friedlander reaction is the most commonly used method to synthesis substituted quinolines, the essential intermediates in the medicine industry. A facile one-pot approach for synthesizing substituted quinolines by the reaction of isoxazoles, ammonium formate-Pd/C, concentrated sulfuric acid, methanol and ketones using Friedlander reaction conditions is reported. Procedures for the synthesis of quinoline derivatives were optimized, and the yield was up to 90.4%. The yield of aromatic ketones bearing electron-withdrawing groups was better than the ones with electron-donating substituents. The structures of eight substituted quinolines were characterized by MS, IR, H-NMR and 13CNMR, which were in agreement with the expected structures. The mechanism for the conversion was proposed, which involved the Pd/C catalytic hydrogen transfer reduction of unsaturated five-membered ring of isoxazole to produce ortho-amino aromatic ketones. Then the nucleophilic addition of with carbonyl of the ketones generated Schiff base in situ, which underwent an intermolecular aldol reaction followed by the elimination of H2O to give production of substituted quinolines. This new strategy can be readily applied for the construction of quinolines utilizing a diverse range of ketones and avoids the post-reaction separation of the o-amino aromatic ketone compounds. The conventionally used o-amino aromatic ketone compounds in Friedlander reaction to prepare substituted quinoline are laborious to synthesize and are apt to self-polymerize. While oxazole adopted in this work can be prepared at ease by the condensation of benzoacetonitrile and nitrobenzene derivatives under the catalysis of a strong base. Moreover, the key features of this protocol are readily available starting materials, excellent functional group tolerance, mild reaction conditions, operational simplicity, and feasibility for scaling up.


2016 ◽  
Vol 41 (47) ◽  
pp. 22059-22066 ◽  
Author(s):  
Jun-Ping Zhou ◽  
Juan Zhang ◽  
Xiao-Hui Dai ◽  
Xin Wang ◽  
Shu-Yong Zhang

RSC Advances ◽  
2014 ◽  
Vol 4 (26) ◽  
pp. 13620-13625 ◽  
Author(s):  
Amanda S. de Miranda ◽  
Rodrigo O. M. A. de Souza ◽  
Leandro S. M. Miranda

The chemoenzymatic dynamic kinetic resolution of (+/−)-α-methylbenzylamine under continuous flow conditions in the presence of Pd/BaSO4as racemization catalyst and ammonium formate as reductant is described.


ACS Catalysis ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 4772-4782 ◽  
Author(s):  
Manasa Sridhar ◽  
Davide Ferri ◽  
Martin Elsener ◽  
Jeroen Anton van Bokhoven ◽  
Oliver Kröcher

Sign in / Sign up

Export Citation Format

Share Document