An extremal property of the eigenvalue of irreducible matrices in idempotent algebra and solution of the Rawls location problem

2011 ◽  
Vol 44 (4) ◽  
pp. 272-281 ◽  
Author(s):  
N. K. Krivulin
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 303
Author(s):  
Nikolai Krivulin

We consider a decision-making problem to evaluate absolute ratings of alternatives from the results of their pairwise comparisons according to two criteria, subject to constraints on the ratings. We formulate the problem as a bi-objective optimization problem of constrained matrix approximation in the Chebyshev sense in logarithmic scale. The problem is to approximate the pairwise comparison matrices for each criterion simultaneously by a common consistent matrix of unit rank, which determines the vector of ratings. We represent and solve the optimization problem in the framework of tropical (idempotent) algebra, which deals with the theory and applications of idempotent semirings and semifields. The solution involves the introduction of two parameters that represent the minimum values of approximation error for each matrix and thereby describe the Pareto frontier for the bi-objective problem. The optimization problem then reduces to a parametrized vector inequality. The necessary and sufficient conditions for solutions of the inequality serve to derive the Pareto frontier for the problem. All solutions of the inequality, which correspond to the Pareto frontier, are taken as a complete Pareto-optimal solution to the problem. We apply these results to the decision problem of interest and present illustrative examples.


1981 ◽  
Vol 32 (9) ◽  
pp. 803 ◽  
Author(s):  
J. Karkazis ◽  
T. B. Boffey

2020 ◽  
Vol 1575 ◽  
pp. 012188
Author(s):  
Chong Xiang ◽  
Xiaoshen Li ◽  
Guanglei Sun

Algorithmica ◽  
2021 ◽  
Author(s):  
Alexander Grigoriev ◽  
Tim A. Hartmann ◽  
Stefan Lendl ◽  
Gerhard J. Woeginger

AbstractWe study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance $$\delta$$ δ from each other. We investigate the complexity of this problem in terms of the rational parameter $$\delta$$ δ . The problem is polynomially solvable, if the numerator of $$\delta$$ δ is 1 or 2, while all other cases turn out to be NP-hard.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 853
Author(s):  
Jesús Sánchez-Oro ◽  
Ana D. López-Sánchez ◽  
Anna Martínez-Gavara ◽  
Alfredo G. Hernández-Díaz ◽  
Abraham Duarte

This paper presents a hybridization of Strategic Oscillation with Path Relinking to provide a set of high-quality nondominated solutions for the Multiobjective k-Balanced Center Location problem. The considered location problem seeks to locate k out of m facilities in order to serve n demand points, minimizing the maximum distance between any demand point and its closest facility while balancing the workload among the facilities. An extensive computational experimentation is carried out to compare the performance of our proposal, including the best method found in the state-of-the-art as well as traditional multiobjective evolutionary algorithms.


Sign in / Sign up

Export Citation Format

Share Document