scholarly journals Nonlocal approximations to anisotropic Sobolev norms

2021 ◽  
pp. 1-20
Author(s):  
Ivan Cinelli ◽  
Gianluca Ferrari ◽  
Marco Squassina

We obtain some nonlocal characterizations for a class of variable exponent Sobolev spaces arising in nonlinear elasticity, in the theory of electrorheological fluids as well as in image processing for the regions where the variable exponent p ( x ) reaches the value 1.

2021 ◽  
pp. 1-22
Author(s):  
Gianluca Ferrari ◽  
Marco Squassina

We obtain some nonlocal characterizations for a class of variable exponent Sobolev spaces arising in nonlinear elasticity theory and in the theory of electrorheological fluids. We also get a singular limit formula extending Nguyen results to the anisotropic case.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yongqiang Fu ◽  
Miaomiao Yang

This paper is concerned with the functionalJdefined byJ(u)=∫Ω×ΩW(x,y,∇u(x),∇u(y))dx dy, whereΩ⊂ℝNis a regular open bounded set andWis a real-valued function with variable growth. After discussing the theory of Young measures in variable exponent Sobolev spaces, we study the weak lower semicontinuity and relaxation ofJ.


Author(s):  
Mihai Mihăilescu ◽  
Vicenţiu Rădulescu

We study the boundary value problem in , u =0 on , where is a smooth bounded domain in and is a -Laplace type operator, with . We prove that if λ is large enough then there exist at least two non-negative weak solutions. Our approach relies on the variable exponent theory of generalized Lebesgue–Sobolev spaces, combined with adequate variational methods and a variant of the Mountain Pass lemma.


2021 ◽  
Vol 7 (1) ◽  
pp. 50-65
Author(s):  
Mustapha Ait Hammou ◽  
Elhoussine Azroul

AbstractThe aim of this paper is to establish the existence of solutions for a nonlinear elliptic problem of the form\left\{ {\matrix{{A\left( u \right) = f} \hfill & {in} \hfill & \Omega \hfill \cr {u = 0} \hfill & {on} \hfill & {\partial \Omega } \hfill \cr } } \right.where A(u) = −diva(x, u, ∇u) is a Leray-Lions operator and f ∈ W−1,p′(.)(Ω) with p(x) ∈ (1, ∞). Our technical approach is based on topological degree method and the theory of variable exponent Sobolev spaces.


Sign in / Sign up

Export Citation Format

Share Document