A new weighting scheme for arc based circle cone-beam CT reconstruction

2021 ◽  
pp. 1-19
Author(s):  
Wei Wang ◽  
Xiang-Gen Xia ◽  
Chuanjiang He ◽  
Zemin Ren ◽  
Jian Lu

In this paper, we present an arc based fan-beam computed tomography (CT) reconstruction algorithm by applying Katsevich’s helical CT image reconstruction formula to 2D fan-beam CT scanning data. Specifically, we propose a new weighting function to deal with the redundant data. Our weighting function ϖ ( x _ , λ ) is an average of two characteristic functions, where each characteristic function indicates whether the projection data of the scanning angle contributes to the intensity of the pixel x _ . In fact, for every pixel x _ , our method uses the projection data of two scanning angle intervals to reconstruct its intensity, where one interval contains the starting angle and another contains the end angle. Each interval corresponds to a characteristic function. By extending the fan-beam algorithm to the circle cone-beam geometry, we also obtain a new circle cone-beam CT reconstruction algorithm. To verify the effectiveness of our method, the simulated experiments are performed for 2D fan-beam geometry with straight line detectors and 3D circle cone-beam geometry with flat-plan detectors, where the simulated sinograms are generated by the open-source software “ASTRA toolbox.” We compare our method with the other existing algorithms. Our experimental results show that our new method yields the lowest root-mean-square-error (RMSE) and the highest structural-similarity (SSIM) for both reconstructed 2D and 3D fan-beam CT images.

2006 ◽  
Vol 2006 ◽  
pp. 1-8 ◽  
Author(s):  
Dong Yang ◽  
Ruola Ning

A cone beam circular half-scan scheme is becoming an attractive imaging method in cone beam CT since it improves the temporal resolution. Traditionally, the redundant data in the circular half-scan range is weighted by a central scanning plane-dependent weighting function; FDK algorithm is then applied on the weighted projection data for reconstruction. However, this scheme still suffers the attenuation coefficient drop inherited with FDK when the cone angle becomes large. A new heuristic cone beam geometry-dependent weighting scheme is proposed based on the idea that there exists less redundancy for the projection data away from the central scanning plane. The performance of FDKHSCW scheme is evaluated by comparing it to the FDK full-scan (FDKFS) scheme and the traditional FDK half-scan scheme with Parker's fan beam weighting function (FDKHSFW). Computer simulation is employed and conducted on a 3D Shepp-Logan phantom. The result illustrates a correction of FDKHSCW to the attenuation coefficient drop in the off-scanning plane associated with FDKFS and FDKHSFW while maintaining the same spatial resolution.


2010 ◽  
Vol 37 (4) ◽  
pp. 1757-1760 ◽  
Author(s):  
Xun Jia ◽  
Yifei Lou ◽  
Ruijiang Li ◽  
William Y. Song ◽  
Steve B. Jiang

2012 ◽  
Vol 239-240 ◽  
pp. 1148-1151
Author(s):  
Li Fang Wang

The Katsevich reconstruction algorithm based on cone-beam must compute the derivative of projection data in the reconstruction process, but projection data are discrete and haven’t derivative. So the derivatives of the polynomial interpolation function are as approximation of the derivative of projection data. To verify the effectiveness of this method, 3D Shepp-Logan model is reconstructed by the method and the average gradient is used to measure the clarity of image. The experimental results show that this method enables image clearer and improves image quality


2010 ◽  
Vol 37 (6Part6) ◽  
pp. 3441-3441 ◽  
Author(s):  
X Jia ◽  
Y Lou ◽  
J Lewis ◽  
R Li ◽  
X Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document