attenuation coefficient
Recently Published Documents


TOTAL DOCUMENTS

1145
(FIVE YEARS 284)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 144 ◽  
pp. 104044
Author(s):  
N. Nagaraja ◽  
K.N. Sridhar ◽  
H.C. Manjunatha ◽  
Y.S. Vidya ◽  
L. Seenappa ◽  
...  

2022 ◽  
Author(s):  
Jamila S. Alzahrani ◽  
NAZIRUL NAZRIN SHAHROL NIDZAM ◽  
M. K. Halimah ◽  
K. Mahmoud ◽  
M. I. Sayyed ◽  
...  

Abstract The investigation involves a comprehensive study on the mechanical and shielding features of the zinc erbium tellurite glasses as a function of doped Ag2O content. The mechanical features are estimated for the examined glasses by utilizing the Makishima-Makinzie model. The results showed the mechanical moduli of Young (E), bulk (B), Shear (K), and longitudinal (L) increased with the increment of the Ag2O substitution ratio. Besides, the radiation shielding properties were also studied and discussed. Among the shielding parameters, the linear attenuation coefficient (LAC), half-value layer (HVL), the lead equivalent and transmission rate (TR) were estimated. The linear attenuation coefficient results illustrated that the TZEAg glasses are better compared to the commercial marketing glasses, especially TZEAg5 glasses. Doping of Ag2O content in zinc erbium tellurite glass improves its ability to attenuate the gamma photons. Also, this study revealed the effectiveness of the examined glasses on the fast neutron, where the fast neutron mass removal cross-section ∑R (cm2/g) computed theoretically. The results offered the maximum value of ∑R = 0.019 cm2/g attained for TZEAg1 while the minimum value ∑R = 0.01884 cm2/g for TZEAg5 glass.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260600
Author(s):  
Ming Ding ◽  
Shi-yu Pan ◽  
Jing Huang ◽  
Cheng Yuan ◽  
Qiang Zhang ◽  
...  

Objective To explore the feasibility of using random forest (RF) machine learning algorithm in assessing normal and malignant peripheral pulmonary nodules based on in vivo endobronchial optical coherence tomography (EB-OCT). Methods A total of 31 patients with pulmonary nodules were admitted to Department of Respiratory Medicine, Zhongda Hospital, Southeast University, and underwent chest CT, EB-OCT and biopsy. Attenuation coefficient and up to 56 different image features were extracted from A-line and B-scan of 1703 EB-OCT images. Attenuation coefficient and 29 image features with significant p-values were used to analyze the differences between normal and malignant samples. A RF classifier was trained using 70% images as training set, while 30% images were included in the testing set. The accuracy of the automated classification was validated by clinically proven pathological results. Results Attenuation coefficient and 29 image features were found to present different properties with significant p-values between normal and malignant EB-OCT images. The RF algorithm successfully classified the malignant pulmonary nodules with sensitivity, specificity, and accuracy of 90.41%, 77.87% and 83.51% respectively. Conclusion It is clinically practical to distinguish the nature of pulmonary nodules by integrating EB-OCT imaging with automated machine learning algorithm. Diagnosis of malignant pulmonary nodules by analyzing quantitative features from EB-OCT images could be a potentially powerful way for early detection of lung cancer.


2021 ◽  
Vol 12 (1) ◽  
pp. 212
Author(s):  
Florian Hubert ◽  
Tobias Bader ◽  
Larissa Wahl ◽  
Andreas Hofmann ◽  
Konstantin Lomakin ◽  
...  

Ceramic materials are chemical- and temperature-resistant and, therefore, enable novel application fields ranging from automotive to aerospace. With this in mind, this contribution focuses on developing an additive manufacturing approach for 3D-printed waveguides made of ceramic materials. In particular, a special design approach for ceramic waveguides, which introduces non-radiating slots into the waveguides sidewalls, and a customized metallization process, are presented. The developed process allows for using conventional stereolithographic desktop-grade 3D-printers. The proposed approach has, therefore, benefits such as low-cost fabrication, moderate handling effort and independence of the concrete waveguide geometry. The performance of a manufactured ceramic WR12 waveguide is compared to a commercial waveguide and a conventionally printed counterpart. For that reason, relevant properties, such as surface roughness and waveguide geometry, are characterized. Parsing the electrical measurements, the ceramic waveguide specimen features an attenuation coefficient of 30–60 dB/m within the E-Band. The measured attenuation coefficient is 200% and 300% higher compared to the epoxy resin and the commercial waveguide and is attributed to the increased surface roughness of the ceramic substrate.


Author(s):  
S. A. Chizhik ◽  
M. A. Zhuravkov ◽  
A. B. Petrovskiy ◽  
V. Ya. Prushak ◽  
D. A. Puzanov

Methodological approaches to the selection of ultimate state criteria and strength characteristics of the repeatedly undermined rock massifs were developed. These approaches were designed to provide parametric support to the geomechanical modelling of the massif stress-strain state and the mining systems of the Starobin potash deposit mine fields planned for the additional mining of the mineral reserves left. It was established that a complex criterion must be used to study the massif ultimate state. Determination of such criterion can be carried out using the developed approaches. The first approach is to select several criteria that evaluate the massif ultimate state by certain types of the massif stress-strain state. These criteria are the following: the criterion of the maximum normal stresses, criterion of the maximum linear strains, the criterion of the maximum shear stresses and the Coulomb–Mohr failure criterion. The second approach is to construct an integrated failure state criterion for materials whose ultimate tensile and compressive stresses differ significantly. In this case, parameters characterizing the type of stress state and properties of the material are introduced. These parameters together determine the destruction character – tear or shear. To describe the rocks behavior in the extreme strength stage of deformation, it is proposed to apply deformation theory of strength using the developed strain failure criterion. When calculating the strength characteristics of the repeatedly undermined rock massif, it is recommended to use a structural attenuation coefficient as the product of several factors, taking into account various types of disturbances in the primary undermined massif and the time factor. The Coulomb–Mohr strength condition is recommended to be used taking into account the composite structural attenuation coefficient. Dependencies have been developed to describe the change in the strength characteristics of rocks in the undermined massif, considering the attenuation coefficient.


Author(s):  
Aleksey Skvorcov

An expression for quasi-analytical calculation of the attenuation coefficient, due to losses in metal walls of a lunar waveguide with homogeneous dielectric filling is obtained. The results of quasi-analytical calculation of the attenuation coefficient in metal walls of hollow lunar waveguide at different values of its geometrical sizes and operating wavelength, which can be useful in synthesis of microwave devices for various applications, based on the considered guide system, are represented.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7878
Author(s):  
Mohamed Elsafi ◽  
Mirvat Fawzi Dib ◽  
Hoda Ezzelddin Mustafa ◽  
M. I. Sayyed ◽  
Mayeen Uddin Khandaker ◽  
...  

We prepared red clays by introducing different percentages of PbO, Bi2O3, and CdO. In order to understand how the introduction of these oxides into red clay influences its attenuation ability, the mass attenuation coefficient of the clays was experimentally measured in a lab using an HPGe detector. The theoretical shielding capability of the material present was obtained using XCOM to verify the accuracy of the experimental results. We found that the experimental and theoretical values agree to a very high degree of precision. The effective atomic number (Zeff) of pure red clay, and red clay with the three metal oxides was determined. The pure red clay had the lowest Zeff of the tested samples, which means that introducing any of these three oxides into the clay will greatly enhance its Zeff, and consequently its attenuation capability. Additionally, the Zeff for red clay with 10 wt% CdO is lower than the Zeff of red clay with 10 wt% Bi2O3 and PbO. We also prepared red clay using 10 wt% CdO nanoparticles and compared its attenuation ability with the red clay prepared with 10 wt% PbO, Bi2O3, and CdO microparticles. We found that the MAC of the red clay with 10 wt% nano-CdO was higher than the MAC of the clay with microparticle samples. Accordingly, nanoparticles could be a useful way to enhance the shielding ability of current radiation shielding materials.


2021 ◽  
Author(s):  
Vyacheslav V. Suslin ◽  
Stanislav Sholar ◽  
Aleksandr Latushkin ◽  
Oleg Martynov ◽  
Svetlana Pryahina

Sign in / Sign up

Export Citation Format

Share Document