International Journal of Biomedical Imaging
Latest Publications


TOTAL DOCUMENTS

480
(FIVE YEARS 7)

H-INDEX

32
(FIVE YEARS 0)

Published By Hindawi Limited

1687-4196, 1687-4188

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mamtha V. Shetty ◽  
D. Jayadevappa ◽  
G. N. Veena

Among the different types of cancers, lung cancer is one of the widespread diseases which causes the highest number of deaths every year. The early detection of lung cancer is very essential for increasing the survival rate in patients. Although computed tomography (CT) is the preferred choice for lungs imaging, sometimes CT images may produce less tumor visibility regions and unconstructive rates in tumor portions. Hence, the development of an efficient segmentation technique is necessary. In this paper, water cycle bat algorithm- (WCBA-) based deformable model approach is proposed for lung tumor segmentation. In the preprocessing stage, a median filter is used to remove the noise from the input image and to segment the lung lobe regions, and Bayesian fuzzy clustering is applied. In the proposed method, deformable model is modified by the dictionary-based algorithm to segment the lung tumor accurately. In the dictionary-based algorithm, the update equation is modified by the proposed WCBA and is designed by integrating water cycle algorithm (WCA) and bat algorithm (BA).



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Vincent A. Stadelmann ◽  
Gabrielle Boyd ◽  
Martin Guillot ◽  
Jean-Guy Bienvenu ◽  
Charles Glaus ◽  
...  

Objective. While microCT evaluation of atherosclerotic lesions in mice has been formally validated, existing image processing methods remain undisclosed. We aimed to develop and validate a reproducible image processing workflow based on phosphotungstic acid-enhanced microCT scans for the volumetric quantification of atherosclerotic lesions in entire mouse aortas. Approach and Results. 42 WT and 42 apolipoprotein E knockout mouse aortas were scanned. The walls, lumen, and plaque objects were segmented using dual-threshold algorithms. Aortic and plaque volumes were computed by voxel counting and lesion surface by triangulation. The results were validated against manual and histological evaluations. Knockout mice had a significant increase in plaque volume compared to wild types with a plaque to aorta volume ratio of 0.3%, 2.8%, and 9.8% at weeks 13, 18, and 26, respectively. Automatic segmentation correlated with manual ( r 2 ≥ 0.89 ; p < .001 ) and histological evaluations ( r 2 > 0.96 ; p < .001 ). Conclusions. The semiautomatic workflow enabled rapid quantification of atherosclerotic plaques in mice with minimal manual work.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Asma Naseer ◽  
Tahreem Yasir ◽  
Arifah Azhar ◽  
Tanzeela Shakeel ◽  
Kashif Zafar

Brain tumor is a deadly neurological disease caused by an abnormal and uncontrollable growth of cells inside the brain or skull. The mortality ratio of patients suffering from this disease is growing gradually. Analysing Magnetic Resonance Images (MRIs) manually is inadequate for efficient and accurate brain tumor diagnosis. An early diagnosis of the disease can activate a timely treatment consequently elevating the survival ratio of the patients. Modern brain imaging methodologies have augmented the detection ratio of brain tumor. In the past few years, a lot of research has been carried out for computer-aided diagnosis of human brain tumor to achieve 100% diagnosis accuracy. The focus of this research is on early diagnosis of brain tumor via Convolution Neural Network (CNN) to enhance state-of-the-art diagnosis accuracy. The proposed CNN is trained on a benchmark dataset, BR35H, containing brain tumor MRIs. The performance and sustainability of the model is evaluated on six different datasets, i.e., BMI-I, BTI, BMI-II, BTS, BMI-III, and BD-BT. To improve the performance of the model and to make it sustainable for totally unseen data, different geometric data augmentation techniques, along with statistical standardization, are employed. The proposed CNN-based CAD system for brain tumor diagnosis performs better than other systems by achieving an average accuracy of around 98.8% and a specificity of around 0.99. It also reveals 100% correct diagnosis for two brain MRI datasets, i.e., BTS and BD-BT. The performance of the proposed system is also compared with the other existing systems, and the analysis reveals that the proposed system outperforms all of them.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
El-Sayed H. Ibrahim ◽  
Luba Frank ◽  
Dhiraj Baruah ◽  
V. Emre Arpinar ◽  
Andrew S. Nencka ◽  
...  

Cardiac magnetic resonance imaging (CMR) is considered the gold standard for measuring cardiac function. Further, in a single CMR exam, information about cardiac structure, tissue composition, and blood flow could be obtained. Nevertheless, CMR is underutilized due to long scanning times, the need for multiple breath-holds, use of a contrast agent, and relatively high cost. In this work, we propose a rapid, comprehensive, contrast-free CMR exam that does not require repeated breath-holds, based on recent developments in imaging sequences. Time-consuming conventional sequences have been replaced by advanced sequences in the proposed CMR exam. Specifically, conventional 2D cine and phase-contrast (PC) sequences have been replaced by optimized 3D-cine and 4D-flow sequences, respectively. Furthermore, conventional myocardial tagging has been replaced by fast strain-encoding (SENC) imaging. Finally, T1 and T2 mapping sequences are included in the proposed exam, which allows for myocardial tissue characterization. The proposed rapid exam has been tested in vivo. The proposed exam reduced the scan time from >1 hour with conventional sequences to <20 minutes. Corresponding cardiovascular measurements from the proposed rapid CMR exam showed good agreement with those from conventional sequences and showed that they can differentiate between healthy volunteers and patients. Compared to 2D cine imaging that requires 12-16 separate breath-holds, the implemented 3D-cine sequence allows for whole heart coverage in 1-2 breath-holds. The 4D-flow sequence allows for whole-chest coverage in less than 10 minutes. Finally, SENC imaging reduces scan time to only one slice per heartbeat. In conclusion, the proposed rapid, contrast-free, and comprehensive cardiovascular exam does not require repeated breath-holds or to be supervised by a cardiac imager. These improvements make it tolerable by patients and would help improve cost effectiveness of CMR and increase its adoption in clinical practice.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mundher Mohammed Taresh ◽  
Ningbo Zhu ◽  
Talal Ahmed Ali Ali ◽  
Asaad Shakir Hameed ◽  
Modhi Lafta Mutar

The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abubakar M. Ashir ◽  
Salisu Ibrahim ◽  
Mohammed Abdulghani ◽  
Abdullahi Abdu Ibrahim ◽  
Mohammed S. Anwar

Diabetic retinopathy is one of the leading diseases affecting eyes. Lack of early detection and treatment can lead to total blindness of the diseased eyes. Recently, numerous researchers have attempted producing automatic diabetic retinopathy detection techniques to supplement diagnosis and early treatment of diabetic retinopathy symptoms. In this manuscript, a new approach has been proposed. The proposed approach utilizes the feature extracted from the fundus image using a local extrema information with quantized Haralick features. The quantized features encode not only the textural Haralick features but also exploit the multiresolution information of numerous symptoms in diabetic retinopathy. Long Short-Term Memory network together with local extrema pattern provides a probabilistic approach to analyze each segment of the image with higher precision which helps to suppress false positive occurrences. The proposed approach analyzes the retina vasculature and hard-exudate symptoms of diabetic retinopathy on two different public datasets. The experimental results evaluated using performance matrices such as specificity, accuracy, and sensitivity reveal promising indices. Similarly, comparison with the related state-of-the-art researches highlights the validity of the proposed method. The proposed approach performs better than most of the researches used for comparison.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fayadh Alenezi ◽  
K. C. Santosh

One of the major shortcomings of Hopfield neural network (HNN) is that the network may not always converge to a fixed point. HNN, predominantly, is limited to local optimization during training to achieve network stability. In this paper, the convergence problem is addressed using two approaches: (a) by sequencing the activation of a continuous modified HNN (MHNN) based on the geometric correlation of features within various image hyperplanes via pixel gradient vectors and (b) by regulating geometric pixel gradient vectors. These are achieved by regularizing proposed MHNNs under cohomology, which enables them to act as an unconventional filter for pixel spectral sequences. It shifts the focus to both local and global optimizations in order to strengthen feature correlations within each image subspace. As a result, it enhances edges, information content, contrast, and resolution. The proposed algorithm was tested on fifteen different medical images, where evaluations were made based on entropy, visual information fidelity (VIF), weighted peak signal-to-noise ratio (WPSNR), contrast, and homogeneity. Our results confirmed superiority as compared to four existing benchmark enhancement methods.



2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kohei Togami ◽  
Hiroaki Ozaki ◽  
Yuki Yumita ◽  
Anri Kitayama ◽  
Hitoshi Tada ◽  
...  

Idiopathic pulmonary fibrosis is a progressive, chronic lung disease characterized by the accumulation of extracellular matrix proteins, including collagen and elastin. Imaging of extracellular matrix in fibrotic lungs is important for evaluating its pathological condition as well as the distribution of drugs to pulmonary focus sites and their therapeutic effects. In this study, we compared techniques of staining the extracellular matrix with optical tissue-clearing treatment for developing three-dimensional imaging methods for focus sites in pulmonary fibrosis. Mouse models of pulmonary fibrosis were prepared via the intrapulmonary administration of bleomycin. Fluorescent-labeled tomato lectin, collagen I antibody, and Col-F, which is a fluorescent probe for collagen and elastin, were used to compare the imaging of fibrotic foci in intact fibrotic lungs. These lung samples were cleared using the ClearT2 tissue-clearing technique. The cleared lungs were two dimensionally observed using laser-scanning confocal microscopy, and the images were compared with those of the lung tissue sections. Moreover, three-dimensional images were reconstructed from serial two-dimensional images. Fluorescent-labeled tomato lectin did not enable the visualization of fibrotic foci in cleared fibrotic lungs. Although collagen I in fibrotic lungs could be visualized via immunofluorescence staining, collagen I was clearly visible only until 40 μm from the lung surface. Col-F staining facilitated the visualization of collagen and elastin to a depth of 120 μm in cleared lung tissues. Furthermore, we visualized the three-dimensional extracellular matrix in cleared fibrotic lungs using Col-F, and the images provided better visualization than immunofluorescence staining. These results suggest that ClearT2 tissue-clearing treatment combined with Col-F staining represents a simple and rapid technique for imaging fibrotic foci in intact fibrotic lungs. This study provides important information for imaging various organs with extracellular matrix-related diseases.



2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Wei He ◽  
Yu Zhang ◽  
Junling Ding ◽  
Linman Zhao

The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to “pre-process” the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rui Liu ◽  
Yuanyuan Jia ◽  
Xiangqian He ◽  
Zhe Li ◽  
Jinhua Cai ◽  
...  

In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.



Sign in / Sign up

Export Citation Format

Share Document