2020–2021 Florida Citrus Production Guide: Best Management Practices for Soil-Applied Agricultural Chemicals

EDIS ◽  
2020 ◽  
Author(s):  
Davie M. Kadyampakeni ◽  
Larry W. Duncan
EDIS ◽  
2021 ◽  
Author(s):  
Lauren Marie Diepenbrock ◽  
Davie M. Kadyampakeni ◽  
Larry W. Duncan

Reviewed March 2021. There are no changes in recommendation from 2020.


2006 ◽  
Vol 16 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Larry Parsons ◽  
Brian Boman

Best management practices (BMPs) started in Florida citrus (Citrus spp.) in the 1990s and have evolved to play a major role in production practices today. One of the earliest BMPs in Florida arose from concerns over nitrate-nitrogen concentrations in some surficial groundwater aquifers exceeding the 10 mg·L-1 drinking water standard. This occurred in an area of well-drained sandy soils known as the Central Florida Ridge that extends north and south through the central part of the Florida peninsula. State agencies could have used a strictly regulatory approach and restricted how much nitrogen growers could apply. Instead of setting arbitrary regulations, the agencies promoted a scientific-based BMP approach. A nitrogen BMP for Central Florida Ridge citrus was established, and research is now validating the earlier groundwater work on more grower field sites. The purpose of this BMP was to minimize the risk of leaching nitrates from fertilizer into the groundwater. Several important aspects of the BMP involve: 1) limiting the amount of nitrogen fertilizer applied at any one time, 2) increasing the frequency of fertilizer applications, 3) reducing fertilizer applications during the summer rainy season, and 4) managing irrigation to reduce leaching below the root zone. Since this Central Florida Ridge nitrogen BMP was established, major BMP actions to improve water quality and reduce the quantity of runoff water have taken place in the Indian River production area of Florida's east coast. BMPs continue to be set up in other parts of the state for a variety of plant and animal agricultural practices. In some cases, cost-share funds have been provided to help implement BMPs. With voluntary BMPs, growers have scientifically based guidelines, a waiver of liability, and an avoidance of arbitrary regulations.


2001 ◽  
pp. 778-779
Author(s):  
S. Paramasivam ◽  
A. K. Alva ◽  
K. S. Sajwan ◽  
J. P. Syvertsen ◽  
T. A. Wheaton ◽  
...  

EDIS ◽  
2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Brian J. Boman ◽  
Thomas A. Obreza ◽  
Kelly T. Morgan

The information provided in the 2008 2nd edition is still sound for healthy citrus trees under Florida production conditions. Much of the information provided in this document on nutrients, application methods, leaf and soil sampling and irrigation scheduling are also effective for huanglongbing (HLB) affected citrus trees. However, research conducted since HLB was detected in Florida in 2005 has established changes in many production practices, including nutrient rates, irrigation scheduling, soil pH management, and use of Citrus Under Protective Screen (CUPS). Changes to the 2nd edition of SL253 will appear in boxes similar to this one at the beginnings of chapters 2, 6, 8, 9, and 11.


EDIS ◽  
1969 ◽  
Vol 2004 (2) ◽  
Author(s):  
Tom Obreza ◽  
Bob Rouse

In the new age of Florida citrus production, Best Management Practices to protect water quality are being considered across the state. Growers have been encouraged to carefully consider nitrogen (N) fertilizer rates, application schedules, and irrigation management in their groves. Nitrogen sources have received little attention because most managers are accustomed to using water-soluble fertilizers like ammonium nitrate, ammonium sulfate, and urea. Synthetic controlled-release fertilizers (CRFs) have existed commercially for more than 35 years, but other than use in young-tree fertilizer blends, Florida citrus growers have avoided them due to high cost and lack of production experience. This document is SL-214, a fact sheet of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: January 2004. https://edis.ifas.ufl.edu/ss433


Sign in / Sign up

Export Citation Format

Share Document