scholarly journals Study of Inventory Model for Deteriorating Items With Exponential Demand Function

2016 ◽  
Vol 34 ◽  
pp. 89-100
Author(s):  
Manik Mondal ◽  
Mohammed Forhad Uddin ◽  
Kazi Anowar Hussain

This paper develops an inventory model for deteriorating items consisting the ordering cost, unit cost, opportunity cost, deterioration cost and shortage cost. In this inventory model instead of linear demand function nonlinear exponential function of time for deteriorating items with deterioration rate has been considered. The formulated model has numerically solved by bisection method. The effects of inflation and cash flow are also taken into account under a trade-credit policy of discount with time. In order to validate the model, numerical examples have been solved by bisection method using Matlab. Further, the sensitivity of different parameters is considered in order to estimate the cash flow.GANIT J. Bangladesh Math. Soc.Vol. 34 (2014) 89-100

2016 ◽  
Vol 13 (2) ◽  
pp. 151-164
Author(s):  
Manik Mondol ◽  
M. Forhad Uddin ◽  
M. S. Hossain

This paper develops an inventory model for deteriorating items consisting the ordering cost, unit cost, opportunity cost, deterioration cost and shortage cost. In this inventory model instead of linear demand function nonlinear exponential function of time for deteriorating items with deterioration rate has been considered. The effects of inflation and cash flow are also taken into account under a trade-credit policy of discount and without discount with time. In order to validate the model, numerical examples have been solved by bisection method deploying Matlab.  Further, in order to estimate the cash flow the sensitivity of different parameters is considered.


2019 ◽  
Vol 53 (3) ◽  
pp. 903-916 ◽  
Author(s):  
Ali Akbar Shaikh ◽  
Leopoldo Eduardo Cárdenas–Barrón ◽  
Asoke Kumar Bhunia ◽  
Sunil Tiwari

This paper develops an inventory model for a deteriorating item with variable demand dependent on the selling price and frequency of advertisement of the item under the financial trade credit policy. Shortages are allowed and these are partially backlogged with a variable rate dependent on the duration of waiting time until to the arrival of next order. In this inventory model, the deterioration rate follows a three-parameter Weibull distribution. The corresponding inventory model is formulated and solved by using the well-known generalized reduced gradient method along with an algorithm. To validate the inventory model, two numerical examples are considered and solved. Finally, based on one numerical example, the impacts of different parameters are studied by a sensitivity analysis considering one parameter at a time and leaving the other parameters fixed.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chandan Mahato ◽  
Gour Chandra Mahata

<p style='text-indent:20px;'>In the business world, both the supplier and the retailer accept the credit to make their business position strong, because the credit not only strengthens their business relationships but also increases the scale of their profits. In this paper, we consider an inventory model for non-instantaneous deteriorating items with price sensitive demand, time varying deterioration rate under two-level trade credit policy. Besides, to reduce deterioration rate, retailers invest some cost to prevent product degradation/decay, known as preservation technology, is also inserted. Consumption of such items within shelf life prevents to deterioration, which can be achieved by bulk sale. In order to stimulate the selling, trade-credit policy is also considered here. In the sequel, not only the supplier would offer fixed credit period to the retailer, but retailer also adopt the trade credit policy to the customers in order to promote the market competition. The retailer can accumulate revenue and interest after the customer pays for the amount of purchasing cost to the retailer until the end of the trade credit period offered by the supplier. The main objective is to determine the optimal replenishment, pricing and preservation technology investment strategies including whether or not invest in preservation technology and how much to invest in order to maximize the average profit of the system. It is proved that the optimal replenishment policy not only exists but is unique for any given selling price and preservation technology cost. An algorithm is presented to derive the optimal solutions of the model. Numerous theorems and lemmas have been inserted to obtain the optimal solution. Finally, numerical examples and managerial implications are incorporated to validate the proposed model.</p>


Sign in / Sign up

Export Citation Format

Share Document