scholarly journals Perpetual American Cancellable Standard Options in Models with Last Passage Times

Algorithms ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 3
Author(s):  
Pavel V. Gapeev ◽  
Libo Li ◽  
Zhuoshu Wu

We derive explicit solutions to the perpetual American cancellable standard put and call options in an extension of the Black–Merton–Scholes model. It is assumed that the contracts are cancelled at the last hitting times for the underlying asset price process of some constant upper or lower levels which are not stopping times with respect to the observable filtration. We show that the optimal exercise times are the first times at which the asset price reaches some lower or upper constant levels. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit conditions.

Risks ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 127 ◽  
Author(s):  
Pavel V. Gapeev ◽  
Hessah Al Motairi

We present closed-form solutions to the perpetual American dividend-paying put and call option pricing problems in two extensions of the Black–Merton–Scholes model with random dividends under full and partial information. We assume that the dividend rate of the underlying asset price changes its value at a certain random time which has an exponential distribution and is independent of the standard Brownian motion driving the price of the underlying risky asset. In the full information version of the model, it is assumed that this time is observable to the option holder, while in the partial information version of the model, it is assumed that this time is unobservable to the option holder. The optimal exercise times are shown to be the first times at which the underlying risky asset price process hits certain constant levels. The proof is based on the solutions of the associated free-boundary problems and the applications of the change-of-variable formula.


2014 ◽  
Vol 51 (03) ◽  
pp. 799-817 ◽  
Author(s):  
Pavel V. Gapeev ◽  
Neofytos Rodosthenous

We study optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and maximum drawdown. The optimal stopping times of the exercise are shown to be the first times at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. We obtain closed-form solutions to the equivalent free-boundary problems for the value functions with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. We derive first-order nonlinear ordinary differential equations for the optimal exercise boundaries of the perpetual American standard options.


2014 ◽  
Vol 51 (3) ◽  
pp. 799-817 ◽  
Author(s):  
Pavel V. Gapeev ◽  
Neofytos Rodosthenous

We study optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and maximum drawdown. The optimal stopping times of the exercise are shown to be the first times at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. We obtain closed-form solutions to the equivalent free-boundary problems for the value functions with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. We derive first-order nonlinear ordinary differential equations for the optimal exercise boundaries of the perpetual American standard options.


2021 ◽  
Vol 53 (1) ◽  
pp. 189-219
Author(s):  
Pavel V. Gapeev ◽  
Peter M. Kort ◽  
Maria N. Lavrutich

AbstractWe present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.


2014 ◽  
Vol 51 (03) ◽  
pp. 799-817
Author(s):  
Pavel V. Gapeev ◽  
Neofytos Rodosthenous

We study optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and maximum drawdown. The optimal stopping times of the exercise are shown to be the first times at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. We obtain closed-form solutions to the equivalent free-boundary problems for the value functions with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. We derive first-order nonlinear ordinary differential equations for the optimal exercise boundaries of the perpetual American standard options.


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2017 ◽  
Vol 13 (1) ◽  
pp. 399-411 ◽  
Author(s):  
Wenqing Bao ◽  
◽  
Xianyi Wu ◽  
Xian Zhou ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document