pricing problems
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yiyao Sun ◽  
Shiqin Liu

Uncertain differential equations (UDEs) with jumps are an essential tool to model the dynamic uncertain systems with dramatic changes. The interest rates, impacted heavily by human uncertainty, are assumed to follow UDEs with jumps in ideal markets. Based on this assumption, two derivatives, namely, interest-rate caps (IRCs) and interest-rate floors (IRFs), are investigated. Some formulas are presented to calculate their prices, which are of too complex forms for calculation in practice. For this reason, numerical algorithms are designed by using the formulas in order to compute the prices of these structured products. Numerical experiments are performed to illustrate the effectiveness and efficiency, which also show the prices of IRCs are strictly increasing with respect to the diffusion parameter while the prices of IRFs are strictly decreasing with respect to the diffusion parameter.


Author(s):  
Lan Wu ◽  
Xiao Zhang

In this paper, we give a complete and succinct proof that an explicit formula for the occupation time holds for all Lévy processes, which is important to the pricing problems of various occupation-time-related derivatives such as step options and corridor options. We construct a sequence of Lévy processes converging to a given Lévy process to obtain our conclusion. Besides financial applications, the mathematical results about occupation times of a Lévy process are of interest in applied probability.


2021 ◽  
pp. 2150002
Author(s):  
Guimin Yang ◽  
Yuanguo Zhu

Compared with investing an ordinary options, investing the power options may possibly yield greater returns. On the one hand, the power option is the best choice for those who want to maximize the leverage of the underlying market movements. On the other hand, power options can also prevent the financial market changes caused by the sharp fluctuations of the underlying assets. In this paper, we investigate the power option pricing problem in which the price of the underlying asset follows the Ornstein–Uhlenbeck type of model involving an uncertain fractional differential equation. Based on critical value criterion, the pricing formulas of European power options are derived. Finally, some numerical experiments are performed to illustrate the results.


2021 ◽  
Author(s):  
Alberto Vera ◽  
Siddhartha Banerjee ◽  
Itai Gurvich

We develop a framework for designing simple and efficient policies for a family of online allocation and pricing problems that includes online packing, budget-constrained probing, dynamic pricing, and online contextual bandits with knapsacks. In each case, we evaluate the performance of our policies in terms of their regret (i.e., additive gap) relative to an offline controller that is endowed with more information than the online controller. Our framework is based on Bellman inequalities, which decompose the loss of an algorithm into two distinct sources of error: (1) arising from computational tractability issues, and (2) arising from estimation/prediction of random trajectories. Balancing these errors guides the choice of benchmarks, and leads to policies that are both tractable and have strong performance guarantees. In particular, in all our examples, we demonstrate constant-regret policies that only require resolving a linear program in each period, followed by a simple greedy action-selection rule; thus, our policies are practical as well as provably near optimal.


Author(s):  
Alexander Kastius ◽  
Rainer Schlosser

AbstractDynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems. In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models. We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain conditions, RL algorithms can be forced into collusion by their competitors without direct communication.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Shih-Hsien Tseng ◽  
Tien Son Nguyen ◽  
Ruei-Ci Wang

In recent years, many advanced techniques have been applied to financial problems; however, very few scholars have used the Lie theory. The purpose of this study was to examine the options for a trade account through Lie symmetry analysis. According to our results, it is effective for determining analytical solutions for pricing issues and solving other partial differential equations. The proposed solution can be used by further researchers or practitioners in option pricing problems for better performance compared with the classical Black–Scholes model.


Sign in / Sign up

Export Citation Format

Share Document