scholarly journals Development of a Thermal Energy Harvesting Converter with Multiple Inputs and an Isolated Output

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 273
Author(s):  
Yeu-Torng Yau ◽  
Kuo-Ing Hwu ◽  
Jenn-Jong Shieh

In this paper, an isolated multi-input single-output (MISO) converter is developed and applied to a thermoelectric energy conversion system to harvest thermal energy. The thermoelectric generators have individual maximum power point tracking functions. Furthermore, such a converter has a high step-up voltage conversion ratio. In addition, the presented converter is imposed on the thermoelectric energy conversion system with the three-point weighting strategy adopted to realize the maximum power point tracking (MPPT). In this paper, the basic principles of this converter are first described and analyzed, and finally some simulated and experimental results are offered to verify the feasibility and effectiveness of such a thermal energy harvesting system.

MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101298
Author(s):  
José-Genaro González-Hernández ◽  
Rubén Salas-Cabrera ◽  
Roberto Vázquez-Bautista ◽  
Luis-Manuel Ong-de-la-Cruz

Author(s):  
Dwiana Hendrawati ◽  
Adi Soeprijanto ◽  
Mochamad Ashari

<span>This paper presents the maximum power point tracking (MPPT) to extract the power of wind energy conversion system (WECS) using the Firefly Algorithm (FA) algorithm. This paper aims to present the FA as one of the accurate algorithms in MPPT techniques. Recently, researchers tend to apply the MPPT digital technique with the P n O algorithm to track MPP. On the other hand, this Paper implements the FA included in the digital classification to improve the performance of the MPPT technique. Therefore, the FA tracking results are verified with P n O to show the accuracy of the MPPT algorithm. The results obtained show that performance is higher when using the FA algorithm</span>


Sign in / Sign up

Export Citation Format

Share Document