scholarly journals Regression and Evaluation on a Forward Interpolated Version of the Great Circle Arcs–Based Distortion Metric of Map Projections

2021 ◽  
Vol 10 (10) ◽  
pp. 649
Author(s):  
Jin Yan ◽  
Tiansheng Xu ◽  
Ni Li ◽  
Guanghong Gong

We studied the numerical approximation problem of distortion in map projections. Most widely used differential methods calculate area distortion and maximum angular distortion using partial derivatives of forward equations of map projections. However, in certain map projections, partial derivatives are difficult to calculate because of the complicated forms of forward equations, e.g., equations with iterations, integrations, or multi-way branches. As an alternative, the spherical great circle arcs–based metric employs the inverse equations of map projections to transform sample points from the projection plane to the spherical surface, and then calculates a differential-independent distortion metric for the map projections. We introduce a novel forward interpolated version of the previous spherical great circle arcs–based metric, solely dependent on the forward equations of map projections. In our proposed numerical solution, a rational function–based regression is also devised and applied to our metric to obtain an approximate metric of angular distortion. The statistical and graphical results indicate that the errors of the proposed metric are fairly low, and a good numerical estimation with high correlation to the differential-based metric can be achieved.

2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Jin Yan ◽  
Tiansheng Xu ◽  
Ni Li ◽  
Guanghong Gong

Measuring, analyzing, reducing, and optimizing distortions in map projections is important in cartography. In this study, we introduced a novel image-based angular distortion metric based on the previous spherical great circle arcs-based metric. Images with predefined patterns were used to generate distorted images using mapping software. The generated distorted images with known patterns were then exploited to calculate the proposed angular distortion metric. The mapping software performed the underlying transformation of map projections. Therefore, there was no direct explicit dependence on the forward equations of the map projections in our proposed metric. However, there were fairly large computation errors in the ordinary image-based approach without special correction. To reduce the error, we introduced surface-fitting-based noise reduction in our approach. We established and solved systems of linear equations based on bivariate polynomial functions in the process of noise reduction. Sufficient experiments were made to validate the proposed image-based metric and the accompanying noise reduction approach. In the experiment, the NASA G.Projector was employed as the mapping software for evaluating more than 200 map projections. Experimental results demonstrated that the proposed image-based approach and surface fitting-based noise reduction are feasible and practical for the evaluation of the angular distortion of map projections.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
A. Khalid ◽  
M. N. Naeem ◽  
P. Agarwal ◽  
A. Ghaffar ◽  
Z. Ullah ◽  
...  

AbstractIn the current paper, authors proposed a computational model based on the cubic B-spline method to solve linear 6th order BVPs arising in astrophysics. The prescribed method transforms the boundary problem to a system of linear equations. The algorithm we are going to develop in this paper is not only simply the approximation solution of the 6th order BVPs using cubic B-spline, but it also describes the estimated derivatives of 1st order to 6th order of the analytic solution at the same time. This novel technique has lesser computational cost than numerous other techniques and is second order convergent. To show the efficiency of the proposed method, four numerical examples have been tested. The results are described using error tables and graphs and are compared with the results existing in the literature.


These formulæ, in which the longitude and latitude of two points in a spherical surface, together with the arc of the great circle intercepted between them, are supposed to be given, furnish the means of determining the longitude of any other point in that circle, from its latitude.


Author(s):  
Nitin Arora ◽  
Ryan P. Russell ◽  
Nathan J. Strange

1968 ◽  
Vol 5 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Paul J. Schweitzer

A perturbation formalism is presented which shows how the stationary distribution and fundamental matrix of a Markov chain containing a single irreducible set of states change as the transition probabilities vary. Expressions are given for the partial derivatives of the stationary distribution and fundamental matrix with respect to the transition probabilities. Semi-group properties of the generators of transformations from one Markov chain to another are investigated. It is shown that a perturbation formalism exists in the multiple subchain case if and only if the change in the transition probabilities does not alter the number of, or intermix the various subchains. The formalism is presented when this condition is satisfied.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Sign in / Sign up

Export Citation Format

Share Document