scholarly journals Formulæ for computing the longitude at sea

These formulæ, in which the longitude and latitude of two points in a spherical surface, together with the arc of the great circle intercepted between them, are supposed to be given, furnish the means of determining the longitude of any other point in that circle, from its latitude.

2008 ◽  
Vol 43 (3) ◽  
pp. 279-290 ◽  
Author(s):  
H. Al Marshad ◽  
A. Corless ◽  
J. Copeland ◽  
A. Moiseff

An inexpensive miniature stage goniometer compatible with a conventional optical microscope was developed to study the size and distribution of ommatidia facets across the compound eye of fireflies (Coleoptera: Lampyridae). The goniometer device was used to take sequential overlapping images of the hemispherical surface along longitudinal great-circle arcs of each eye of Photinus carolinus firefly and Photuris sp. males and females. Images covering the entire eye required 7 great circle scans at increments of 26° rotation. Using the multiple images, we minimized distortions associated with imaging a spherical surface in 2 dimensions and measured surface features with an error of <1.5%. A polar plot provided a consistent display format to relate facet area with location on the surface of the eye. We tested the functionality of the goniometer on a small number of male and female fireflies. It enabled us to make accurate measurements of surface features and address whether there is sexual dimorphism in firefly eyes. Within our limited sample, our results indicated that male eyes were larger than female eyes. In both firefly species the difference between the two sexes in the eye surface area was found statistically significant (P< 0.0001, unpaired t-tests). Male and female eyes also exhibited regional variation in facet area. We hypothesize that the sexual dimorphism and regional variation of firefly eye reflect functional and behavioral capabilities.


2021 ◽  
Vol 10 (10) ◽  
pp. 649
Author(s):  
Jin Yan ◽  
Tiansheng Xu ◽  
Ni Li ◽  
Guanghong Gong

We studied the numerical approximation problem of distortion in map projections. Most widely used differential methods calculate area distortion and maximum angular distortion using partial derivatives of forward equations of map projections. However, in certain map projections, partial derivatives are difficult to calculate because of the complicated forms of forward equations, e.g., equations with iterations, integrations, or multi-way branches. As an alternative, the spherical great circle arcs–based metric employs the inverse equations of map projections to transform sample points from the projection plane to the spherical surface, and then calculates a differential-independent distortion metric for the map projections. We introduce a novel forward interpolated version of the previous spherical great circle arcs–based metric, solely dependent on the forward equations of map projections. In our proposed numerical solution, a rational function–based regression is also devised and applied to our metric to obtain an approximate metric of angular distortion. The statistical and graphical results indicate that the errors of the proposed metric are fairly low, and a good numerical estimation with high correlation to the differential-based metric can be achieved.


1981 ◽  
Vol 64 (9) ◽  
pp. 79-88 ◽  
Author(s):  
Kazuyoshi Inami ◽  
Kunio Sawaya ◽  
Yasuto Mushiake

1885 ◽  
Vol 20 (501supp) ◽  
pp. 7991-7991
Author(s):  
Richard A. Proctor
Keyword(s):  

2019 ◽  
Vol 2 (1) ◽  
pp. 12-24
Author(s):  
Edward A. Alpers

In this article I examine two of Michael Pearson’s most important contributions to our understanding of Indian Ocean history: the concept of the littoral, which he first articulated in his seminal article on “Littoral society: the case for the coast” in The Great Circle 7, no. 1 (1985): 1-8, and his comment in The Indian Ocean (London and New York: Routledge, 2003, p. 9) that “I want it to have a whiff of ozone.” Accordingly, I review Pearson’s publications to see how he has written about these two notions and how they have influenced historical scholarship about the Indian Ocean.


2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Pengfei Li ◽  
Guofu Zhai ◽  
Wenjing Pang ◽  
Wen Hui ◽  
Wenjuan Zhang ◽  
...  

In this study, a new moving amplification matching algorithm was proposed, and then the temporal and spatial differences and correlation were analysed and evaluated by comparing the FengYun-4A Lightning Mapping Imager (FY-4A LMI) data and the China Meteorological Administration Lightning Detection Network Advanced TOA and Direction (CMA-LDN ADTD) system data of southwest China in July 2018. The results are as follows. Firstly, the new moving amplification matching algorithm could effectively reduce the number of invalid operations and save the operation time in comparison to the conventional ergodic algorithms. Secondly, LMI has less detection efficiency during the daytime, using ADTD as a reference. The lightning number detected by ADTD increased from 5:00 AM UTC (13:00 PM BJT, Beijing Time) and almost lasted for a whole day. Thirdly, the trends of lightning data change of LMI and ADTD were the same as the whole. The average daily lightning matching rate of the LMI in July was 63.23%. The average hourly lightning matching rate of the LMI in July was 75.08%. Lastly, the mean value of the spherical surface distance in the matched array was 35.49 km, and roughly 80% of the matched distance was within 57 km, indicating that the spatial threshold limit was relatively stable. The correlation between LMI lightning radiation intensity and ADTD lighting current intensity was low.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


Author(s):  
Fenqiang Zhao ◽  
Zhengwang Wu ◽  
Fan Wang ◽  
Weili Lin ◽  
Shunren Xia ◽  
...  

2020 ◽  
Vol 15 (S359) ◽  
pp. 192-194
Author(s):  
Elismar Lösch ◽  
Daniel Ruschel-Dutra

AbstractGalaxy mergers are known to drive an inflow of gas towards galactic centers, potentia- lly leading to both star formation and nuclear activity. In this work we aim to study how a major merger event in the ARP 245 system is linked with the triggering of an active galactic nucleus (AGN) in the NGC galaxy 2992. We employed three galaxy collision numerical simulations and calculated the inflow of gas through four different concentric spherical surfaces around the galactic centers, estimating an upper limit for the luminosity of an AGN being fed the amount of gas crossing the innermost spherical surface. We found that these simulations predict reasonable gas inflow rates when compared with the observed AGN luminosity in NGC 2992.


Author(s):  
Nawei Liu ◽  
Fei Xie ◽  
Zhenhong Lin ◽  
Mingzhou Jin

In this study, 98 regression models were specified for easily estimating shortest distances based on great circle distances along the U.S. interstate highways nationwide and for each of the continental 48 states. This allows transportation professionals to quickly generate distance, or even distance matrix, without expending significant efforts on complicated shortest path calculations. For simple usage by all professionals, all models are present in the simple linear regression form. Only one explanatory variable, the great circle distance, is considered to calculate the route distance. For each geographic scope (i.e., the national or one of the states), two different models were considered, with and without the intercept. Based on the adjusted R-squared, it was observed that models without intercepts generally have better fitness. All these models generally have good fitness with the linear regression relationship between the great circle distance and route distance. At the state level, significant variations in the slope coefficients between the state-level models were also observed. Furthermore, a preliminary analysis of the effect of highway density on this variation was conducted.


Sign in / Sign up

Export Citation Format

Share Document