perturbation theory
Recently Published Documents


TOTAL DOCUMENTS

10840
(FIVE YEARS 995)

H-INDEX

187
(FIVE YEARS 11)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chenhao Chiu ◽  
Yining Weng ◽  
Bo-wei Chen

Recent research on body and head positions has shown that postural changes may induce varying degrees of changes on acoustic speech signals and articulatory gestures. While the preservation of formant profiles across different postures is suitably accounted for by the two-tube model and perturbation theory, it remains unclear whether it is resulted from the accommodation of tongue postures. Specifically, whether the tongue accommodates the changes in head angle to maintain the target acoustics is yet to be determined. The present study examines vowel acoustics and their correspondence with the articulatory maneuvers of the tongue, including both tongue postures and movements of the tongue center, across different head angles. The results show that vowel acoustics, including pitch and formants, are largely unaffected by upward or downward tilting of the head. These preserved acoustics may be attributed to the lingual gestures that compensate for the effects of gravity. Our results also reveal that the tongue postures in response to head movements appear to be vowel-dependent, and the tongue center may serve as an underlying drive that covariates with the head angle changes. These results imply a close relationship between vowel acoustics and tongue postures as well as a target-oriented strategy for different head angles.


Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Oles Dobosevych ◽  
Rostyslav Hryniv

We study spectral properties of a wide class of differential operators with frozen arguments by putting them into a general framework of rank-one perturbation theory. In particular, we give a complete characterization of possible eigenvalues for these operators and solve the inverse spectral problem of reconstructing the perturbation from the resulting spectrum. This approach provides a unified treatment of several recent studies and gives a clear explanation and interpretation of the obtained results.


Author(s):  
Lorenz Valentin Eberhardt

Abstract We construct a conformal field theory dual to string theory on AdS3 with pure NS-NS flux. It is given by a symmetric orbifold of a linear dilaton theory deformed by a marginal operator from the twist-2 sector. We compute two- and three-point functions on the CFT side to 4th order in conformal perturbation theory at large N. They agree with the string computation at genus 0, thus providing ample evidence for a duality. We also show that the full spectra of both short and long strings on the CFT and the string side match. The duality should be understood as perturbative in 1/N.


2022 ◽  
Vol 258 ◽  
pp. 03003
Author(s):  
Sergey Mikhailov ◽  
Alexandr Pimikov ◽  
N.G. Stefanis

We study two versions of lightcone sum rules to calculate the γ*γ → π0 transition form factor (TFF) within QCD. While the standard version is based on fixed-order perturbation theory by means of a power-series expansion in the strong coupling, the new method incorporates radiative corrections by renormalization-group summation and generates an expansion within a generalized fractional analytic perturbation theory involving only analytic couplings. Using this scheme, we determine the relative nonperturbative parameters and the first two Gegenbauer coefficients of the pion distribution amplitude (DA) to obtain TFF predictions in good agreement with the preliminary BESIII data, while the best-fit pion DA satisfies the most recent lattice constraints on the second moment of the pion DA at the three-loop level.


2022 ◽  
Vol 258 ◽  
pp. 07003
Author(s):  
Massimo Mannarelli ◽  
Fabrizio Canfora ◽  
Stefano Carignano ◽  
Marcela Lagos ◽  
Aldo Vera

We discuss the inhomogeneous pion condensed phase within the framework of chiral perturbation theory. We show how the general expression of the condensate can be obtained solving three coupled differential equations, expressing how the pion fields are modulated in space. Upon using some simplifying assumptions, we determine an analytic solution in (3+1)-dimensions. The obtained inhomogeneous condensate is characterized by a non-vanishing topological charge, which can be identified with the baryonic number. In this way, we obtain an inhomogeneous system of pions hosting an arbitrary number of baryons at fixed position in space.


2022 ◽  
Vol 258 ◽  
pp. 08004
Author(s):  
Maarten Golterman ◽  
Yigal Shamir

We review dilaton chiral perturbation theory (dChPT), the effective low-energy theory for the light sector of near-conformal, confining theories. dChPT provides a systematic expansion in both the fermion mass and the distance to the conformal window. It accounts for the pions and the light scalar, the approximate Nambu–Goldstone bosons for chiral and scale symmetry, respectively. A unique feature of dChPT is the existence of a large-mass regime in which the theory exhibits approximate hyperscaling, while the expansion nevertheless remains systematic. We discuss applications to lattice data, presenting successes as well as directions for future work.


Author(s):  
В.В. Шагаев

Expressions are derived for the reflection coefficients of electromagnetic waves with "p" and "s" type polarizations from a semi-infinite dielectric medium having an inhomogeneous layer. The influence of the layer was taken into account by the method of perturbation theory in a quadratic approximation of the layer thickness. A method is proposed for converting expressions derived using perturbation theory into other expressions that give more accurate values of the reflection coefficient. The angular dependences of the reflection coefficient obtained by the developed method are compared with those obtained by the numerical solution of electrodynamic equations. Requirements for the layer characteristics are formulated to minimize the error of the analytical solution.


2021 ◽  
Author(s):  
Jinggang Lan ◽  
David Wilkins ◽  
Vladimir Rybkin ◽  
Marcella Iannuzzi ◽  
Juerg Hutter

We report the static and dynamical properties of liquid water at the level of second-order Møller-Plesset per- perturbation theory (MP2) with classical and quantum nuclear dynamics using a neural network potential. We examined the temperature-dependent radial distribution functions, diffusion, and vibrational dynamics. MP2 theory predicts over-structured liquid water as well as a lower diffusion coefficient at ambient conditions compared to experiments, which may be attributed to the incomplete basis set. A better agreement with experimental structural properties and the diffusion constant are observed at an elevated temperature of 340 K from our simulations. Although the high-level electronic structure calculations are expensive, training a neural network potential requires only a few thousand frames. The approach is promising as it involves modest human effort and is straightforwardly extensible to other simple liquids.


Sign in / Sign up

Export Citation Format

Share Document