Faculty Opinions recommendation of A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements.

Author(s):  
Han Liang
Keyword(s):  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiangbo Guo ◽  
Junping Han ◽  
Junyan Lin ◽  
John Finer ◽  
Anne Dorrance ◽  
...  
Keyword(s):  

2000 ◽  
Vol 74 (5) ◽  
pp. 2247-2254 ◽  
Author(s):  
Wenping Qiu ◽  
Scholthof G. Karen-Beth

ABSTRACT Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3′ untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5′ UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5′ UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential “trigger” for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.


2008 ◽  
Vol 82 (14) ◽  
pp. 7034-7046 ◽  
Author(s):  
Eike Steinmann ◽  
Christiane Brohm ◽  
Stephanie Kallis ◽  
Ralf Bartenschlager ◽  
Thomas Pietschmann

ABSTRACT Recently, complete replication of hepatitis C virus (HCV) in tissue culture was established using the JFH1 isolate. To analyze determinants of HCV genome packaging and virion assembly, we developed a system that supports particle production based on trans-packaging of subgenomic viral RNAs. Using JFH1 helper viruses, we show that subgenomic JFH1 replicons lacking the entire core to NS2 coding region are efficiently encapsidated into infectious virus-like particles. Similarly, chimeric helper viruses with heterologous structural proteins trans-package subgenomic JFH1 replicons. Like authentic cell culture-produced HCV (HCVcc) particles, these trans-complemented HCV particles (HCVTCP) penetrate target cells in a CD81 receptor-dependent fashion. Since HCVTCP production was limited by competition between the helper and subgenomic RNA and to avoid contamination of HCVTCP stocks with helper viruses, we created HCV packaging cells. These cells encapsidate various HCV replicons with high efficiency, reaching infectivity titers up to 106 tissue culture infectious doses 50 per milliliter. The produced particles display a buoyant density comparable to HCVcc particles and can be propagated in the packaging cell line but support only a single-round infection in naïve cells. Together, this work demonstrates that subgenomic HCV replicons are assembly competent, thus excluding cis-acting RNA elements in the core-to-NS2 genomic region essential for RNA packaging. The experimental system described here should be helpful to decipher the mechanisms of HCV assembly and to identify RNA elements and viral proteins involved in particle formation. Similar to other vector systems of plus-strand RNA viruses, HCVTCP may prove valuable for gene delivery or vaccination approaches.


2007 ◽  
Vol 37 (3) ◽  
pp. 193 ◽  
Author(s):  
Shien-Young Kang ◽  
Yu-Jeong Choi ◽  
Sang-Im Yun ◽  
Byung-Hak Song ◽  
Young-Min Lee

2018 ◽  
Vol 15 (12) ◽  
pp. 1074-1082 ◽  
Author(s):  
Daniel Benhalevy ◽  
Dimitrios G. Anastasakis ◽  
Markus Hafner

2018 ◽  
Author(s):  
Indu Warrier ◽  
Nikhil Ram-Mohan ◽  
Zeyu Zhu ◽  
Ariana Hazery ◽  
Michelle M Meyer ◽  
...  

AbstractEfficient and highly organized transcription initiation and termination is fundamental to an organism’s ability to survive, proliferate, and quickly respond to its environment. Over the last decade, our simplistic outlook of bacterial transcriptional regulation and architecture has evolved to include stimulus-responsive regulation by untranslated RNA and the formation of alternate transcriptional units. In this study, we map the transcriptional landscape of the bacterial pathogen Streptococcus pneumoniae by applying a combination of high-throughput RNA-sequencing techniques. Our study reveals a complex transcriptome wherein environment-respondent alternate transcriptional units are observed within operons stemming from internal transcription start sites (TSS) and transcription terminators (TTS) suggesting that more fine-tuning of regulation occurs than previously thought. Additionally, we identify many putative cis-regulatory RNA elements and riboswitches within 5’-untranslated regions (5’-UTR) of genes. By integrating TSSs and TTSs with independently collected RNA-Seq datasets from a variety of conditions, we establish the response of these regulators to changes in growth conditions and validate several of them. Furthermore, to determine the importance of ribo-regulation by 5’-UTR elements for in vivo virulence, we show that the pyrR regulatory element is essential for survival, successful colonization and infection in mice suggesting that such RNA elements are potential drug targets. Importantly, we show that our approach of combining high-throughput sequencing with in vivo experiments can reconstruct a global understanding of regulation, but also pave the way for discovery of compounds that target (ribo-) regulators to mitigate virulence and antibiotic resistance.


Virology ◽  
2004 ◽  
Vol 322 (1) ◽  
pp. 182-189 ◽  
Author(s):  
Erik Rollman ◽  
Lisen Arnheim ◽  
Brian Collier ◽  
Daniel Öberg ◽  
Håkan Hall ◽  
...  
Keyword(s):  
Hpv 16 ◽  

Sign in / Sign up

Export Citation Format

Share Document