Scientific Reports
Latest Publications


TOTAL DOCUMENTS

146343
(FIVE YEARS 127819)

H-INDEX

208
(FIVE YEARS 139)

Published By Springer Nature

2045-2322
Updated Saturday, 23 October 2021

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karol Cieminski ◽  
Damian Jozef Flis ◽  
Katarzyna Dzik ◽  
Jan Jacek Kaczor ◽  
Emilia Czyrko ◽  
...  

AbstractWe tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haruka Sakuraba ◽  
Hiroyuki Kurokawa ◽  
Hidenori Genda ◽  
Kenji Ohta

AbstractEarth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean ($$\log _{10} f_{{\mathrm{O}}_2}$$ log 10 f O 2 $$\gtrsim$$ ≳ $${\mathrm{IW}}$$ IW $$-2$$ - 2 , where $$f_{{\mathrm{O}}_2}$$ f O 2 is the oxygen fugacity, $$\mathrm{IW}$$ IW is $$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$ log 10 f O 2 IW , and $$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$ f O 2 IW is $$f_{{\mathrm{O}}_2}$$ f O 2 at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Adil Sadiq

AbstractSeveral polymers like ethylene glycol exhibit non-Newtonian rheological behavior. Ethylene glycol is a world-widely used engine coolant and therefore, investigation of thermal enhancement by dispersing mono and hybrid nanoparticles in ethylene glycol is worthful. Since ethylene glycol has shear rate-dependent viscosity and it obeys the power-law rheological model. Therefore, based on these facts, the power-law rheological model with thermophysical properties is augmented with basic law of heat transfer in fluid for the modeling of the considered physical situation. $$Mo{S}_{2}$$ M o S 2 are taken as mono-nanoparticles where $$Mo{S}_{2}$$ M o S 2 and $$Si{O}_{2}$$ S i O 2 are taken as hybrid nanoparticles. Comparative study for the enhancement of thermal performance of MoS2 ethylene glycol and $$Mo{S}_{2}$$ M o S 2 −$$Si{O}_{2}$$ S i O 2 – ethylene glycol is done. For energy conservation, non-Fourier’s law of Cattaneo–Christov is used. The power-law fluid becomes more heat generative due to the dispersion of $$Mo{S}_{2}$$ M o S 2 and $$Si{O}_{2}$$ S i O 2 . However, $$Mo{S}_{2}$$ M o S 2 −power-law fluid is less heat generative relative to $$Mo{S}_{2}$$ M o S 2 − $$Si{O}_{2}$$ S i O 2 -nanofluid. Thermal relaxation time is found proportional to the ability of the fluid to restore its thermal equilibrium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Ho Park ◽  
Hye-Won Ko ◽  
Jeong-Mok Kim ◽  
Jungmin Park ◽  
Seung-Young Park ◽  
...  

AbstractElectrical conduction in magnetic materials depends on their magnetization configuration, resulting in various magnetoresistances (MRs). The microscopic mechanisms of MR have so far been attributed to either an intrinsic or extrinsic origin, yet the contribution and temperature dependence of either origin has remained elusive due to experimental limitations. In this study, we independently probed the intrinsic and extrinsic contributions to the anisotropic MR (AMR) of a permalloy film at varying temperatures using temperature-variable terahertz time-domain spectroscopy. The AMR induced by the scattering-independent intrinsic origin was observed to be approximately 1.5% at T = 16 K and is virtually independent of temperature. In contrast, the AMR induced by the scattering-dependent extrinsic contribution was approximately 3% at T = 16 K but decreased to 1.5% at T = 155 K, which is the maximum temperature at which the AMR can be resolved using THz measurements. Our results experimentally quantify the temperature-dependent intrinsic and extrinsic contributions to AMR, which can stimulate further theoretical research to aid the fundamental understanding of AMR.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Capelli ◽  
Carmen Bax ◽  
Fabio Grizzi ◽  
Gianluigi Taverna

AbstractMore than one million new cases of prostate cancer (PCa) were reported worldwide in 2020, and a significant increase of PCa incidence up to 2040 is estimated. Despite potential treatability in early stages, PCa diagnosis is challenging because of late symptoms’ onset and limits of current screening procedures. It has been now accepted that cell transformation leads to release of volatile organic compounds in biologic fluids, including urine. Thus, several studies proposed the possibility to develop new diagnostic tools based on urine analysis. Among these, electronic noses (eNoses) represent one of the most promising devices, because of their potential to provide a non-invasive diagnosis. Here we describe the approach aimed at defining the experimental protocol for eNose application for PCa diagnosis. Our research investigates effects of sample preparation and analysis on eNose responses and repeatability. The dependence of eNose diagnostic performance on urine portion analysed, techniques involved for extracting urine volatiles and conditioning temperature were analysed. 192 subjects (132 PCa patients and 60 controls) were involved. The developed experimental protocol has resulted in accuracy, sensitivity and specificity of 83% (CI95% 77–89), 82% (CI95% 73–88) and 87% (CI95% 75–94), respectively. Our findings define eNoses as valuable diagnostic tool allowing rapid and non-invasive PCa diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernardo V. Alvarez ◽  
Marilyse Piché ◽  
Carolin Aizouki ◽  
Fariha Rahman ◽  
Jonathan M. J. Derry ◽  
...  

AbstractSLC4A11 is a H+/NH3/water transport protein, of corneal endothelial cells. SLC4A11 mutations cause congenital hereditary endothelial dystrophy and some cases of Fuchs endothelial corneal dystrophy. To probe SLC4A11’s roles, we compared gene expression in RNA from corneas of 17-week-old slc4a11−/− (n = 3) and slc4a11+/+ mice (n = 3) and subjected to RNA sequencing. mRNA levels for a subset of genes were also assessed by quantitative real-time reverse transcription PCR (qRT RT-PCR). Cornea expressed 13,173 genes, which were rank-ordered for their abundance. In slc4a11−/− corneas, 100 genes had significantly altered expression. Abundant slc14a1 expression, encoding the urea transporter UT-A, suggests a significant role in the cornea. The set of genes with altered expression was subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, revealing that alterations clustered into extracellular region, cytoskeleton, cell adhesion and plasma membrane functions. Gene expression changes further clustered into classes (with decreasing numbers of genes): cell fate and development, extracellular matrix and cell adhesion, cytoskeleton, ion homeostasis and energy metabolism. Together these gene changes confirm earlier suggestions of a role of SLC4A11 in ion homeostasis, energy metabolism, cell adhesion, and reveal an unrecognized SLC4A11 role in cytoskeletal organization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefania Vecchi ◽  
Jessica Bianchi ◽  
Massimiliano Scalici ◽  
Fabrizio Fabroni ◽  
Paolo Tomassetti

AbstractMicroplastics represent an important issue of concern for marine ecosystems worldwide, and closed seas, such as the Mediterranean, are among the most affected by this increasing threat. These pollutants accumulate in large quantities in benthic environments causing detrimental effects on diverse biocenoses. The main focus of this study is on the ‘polychaetes-microplastics’ interactions, particularly on two species of benthic polychaetes with different ecology and feeding strategies: the sessile and filter feeder Sabella spallanzanii (Gmelin, 1791) and the vagile carnivorous Hermodice carunculata (Pallas, 1766). Since not standardized protocols are proposed in literature to date, we compared efficiencies of diverse common procedures suitable for digesting organic matter of polychaetes. After the definition of an efficient digestion protocol for microplastics extraction for both polychaetes, our results showed high microplastics ingestion in both species. Microplastics were found in 42% of individuals of S. spallanzanii, with a mean of 1 (± 1.62) microplastics per individual, in almost all individuals of H. carunculata (93%), with a mean of 3.35 (± 2.60). These significant differences emerged between S. spallanzanii and H. carunculata, is probably due to the diverse feeding strategies. The susceptibility to this pollutant makes these species good bioindicators of the impact of microplastics on biota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianyu Xiong ◽  
Jun Dai ◽  
Yibo Ouyang ◽  
Pan Shen

AbstractThe deformation and failure forms of inclined coal seam roadway under the joint action of dip angle and various geological conditions are complex, and there is a lack of targeted support measures, which brings great problems to the stability control of roadway surrounding rock. In order to safely and economically mine inclined coal seams, taking the engineering geology of Shitanjing No. 2 mining area as the background, and the physical similarity model of right-angle trapezoidal roadway in inclined coal seam, in which the non-contact digital image correlation (DIC) technology and the stress sensor is employed to provide full-field displacement and stress measurements. The deformation control technology of the roadway surrounding rock was proposed, verified by numerical simulation and applied to engineering practice. The research results show that the stress and deformation failure of surrounding rock in low sidewall of roadway are greater than those in high sidewall, showing asymmetric characteristics, and the maximum stress concentration coefficients of roadway sidewall, roof and floor are 4.1, 3.4 and 2.8, respectively. A concept of roadway "cyclic failure" mechanism is proposed that is, the cyclic interaction of the two sidewalls, the sharp angles and roof aggravated the failure of roadway, resulting in the overall instability of roadway. The roadway sidewall is serious rib spalling, the roof is asymmetric "Beret" type caving arch failure, and the floor is slightly bulging. On this basis, the principle of roadway deformation control is revealed and asymmetric support design is adopted, and the deformation of roadway is controlled, which support scheme is effective.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clémence Bonnet ◽  
Denise Oh ◽  
Hua Mei ◽  
Sarah Robertson ◽  
Derek Chang ◽  
...  

AbstractThe corneal epithelium is consistently regenerated by limbal stem/progenitor cells (LSCs), a very small population of adult stem cells residing in the limbus. Several Wnt ligands, including Wnt6, are preferentially expressed in the limbus. To investigate the role of Wnt6 in regulating proliferation and maintenance of human LSCs in an in vitro LSC expansion setting, we generated NIH-3T3 feeder cells to overexpress different levels of Wnt6. Characterization of LSCs cultured on Wnt6 expressing 3T3 cells showed that high level of Wnt6 increased proliferation of LSCs. Medium and high levels of Wnt6 also increased the percentage of small cells (diameter ≤ 12 µm), a feature of the stem cell population. Additionally, the percentage of cells expressing the differentiation marker K12 was significantly reduced in the presence of medium and high Wnt6 levels. Although Wnt6 is mostly known as a canonical Wnt ligand, our data showed that canonical and non-canonical Wnt signaling pathways were activated in the Wnt6-supplemented LSC cultures, a finding suggesting that interrelationships between both pathways are required for LSC regulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Catherine Viel ◽  
Jennifer Clarke ◽  
Can Kayatekin ◽  
Amy M. Richards ◽  
Ming Sum R. Chiang ◽  
...  

AbstractMutations in GBA, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), represent the greatest genetic risk factor for developing synucleinopathies including Parkinson’s disease (PD). Additionally, PD patients harboring a mutant GBA allele present with an earlier disease onset and an accelerated disease progression of both motor and non-motor symptoms. Preclinical studies in mouse models of synucleinopathy suggest that modulation of the sphingolipid metabolism pathway via inhibition of glucosylceramide synthase (GCS) using a CNS-penetrant small molecule may be a potential treatment for synucleinopathies. Here, we aim to alleviate the lipid storage burden by inhibiting the de novo synthesis of the primary glycosphingolipid substrate of GCase, glucosylceramide (GlcCer). We have previously shown that systemic GCS inhibition reduced GlcCer and glucosylsphingosine (GlcSph) accumulation, slowed α-synuclein buildup in the hippocampus, and improved cognitive deficits. Here, we studied the efficacy of a brain-penetrant clinical candidate GCS inhibitor, venglustat, in mouse models of GBA-related synucleinopathy, including a heterozygous Gba mouse model which more closely replicates the typical GBA-PD patient genotype. Collectively, these data support the rationale for modulation of GCase-related sphingolipid metabolism as a therapeutic strategy for treating GBA-related synucleinopathies.


Sign in / Sign up

Export Citation Format

Share Document