plant virus
Recently Published Documents


TOTAL DOCUMENTS

1515
(FIVE YEARS 253)

H-INDEX

83
(FIVE YEARS 10)

Author(s):  
Milica Nenadić ◽  
Luca Grandi ◽  
Mark C. Mescher ◽  
Consuelo M. De Moraes ◽  
Kerry E. Mauck

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 188
Author(s):  
Gardette R. Valmonte-Cortes ◽  
Sonia T. Lilly ◽  
Michael N. Pearson ◽  
Colleen M. Higgins ◽  
Robin M. MacDiarmid

To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant Arabidopsis thaliana were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 (AtSGS3) and calcium-dependent protein kinase 3 (AtCPK3) by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips. Good limits of detection have been demonstrated from two-fold 10-point serial dilution regression to 0.1 ng of RNA. The ratio of small RNA (sRNA) to ribosomal RNA (rRNA), as a proportion of averaged mock-inoculation, correlated with known virus infection to a high degree of certainty. AtSGS3 transcript decreased between 14- and 28-days post inoculation (dpi) for all viruses investigated, while AtCPK3 transcript increased between 14 and 28 dpi for all viruses. A combination of these two molecular approaches may be useful for assessment of virus-infection of samples without the need for diagnosis of specific virus infection.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jie Wang ◽  
Kaiqiang Hao ◽  
Fangfei Yu ◽  
Lili Shen ◽  
Fenglong Wang ◽  
...  

Abstract Background The annual economic loss caused by plant viruses exceeds 10 billion dollars due to the lack of ideal control measures. Quercetin is a flavonol compound that exerts a control effect on plant virus diseases, but its poor solubility and stability limit the control efficiency. Fortunately, the development of nanopesticides has led to new ideas. Results In this study, 117 nm quercetin nanoliposomes with excellent stability were prepared from biomaterials, and few surfactants and stabilizers were added to optimize the formula. Nbhsp70er-1 and Nbhsp70c-A were found to be the target genes of quercetin, through abiotic and biotic stress, and the nanoliposomes improved the inhibitory effect at the gene and protein levels by 33.6 and 42%, respectively. Finally, the results of field experiment showed that the control efficiency was 38% higher than that of the conventional quercetin formulation and higher than those of other antiviral agents. Conclusion This research innovatively reports the combination of biological antiviral agents and nanotechnology to control plant virus diseases, and it significantly improved the control efficiency and reduced the use of traditional chemical pesticides. Graphical Abstract


2022 ◽  
pp. 493-506
Author(s):  
Logeshkumar Sellappan ◽  
Swathy Manoharan ◽  
Anandhavelu Sanmugam ◽  
Nguyen Tuan Anh

2021 ◽  
Vol 17 (12) ◽  
pp. e1009759
Author(s):  
Nik J. Cunniffe ◽  
Nick P. Taylor ◽  
Frédéric M. Hamelin ◽  
Michael J. Jeger

Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics.


Author(s):  
Srividhya Venkataraman ◽  
Paul Apka ◽  
Erum Shoeb ◽  
Uzma Badar ◽  
Kathleen Hefferon

Plant virus nanoparticles (VNPs) are inexpensive to produce, safe, biodegradable and efficacious as treatments. The applications of r plant virus nanoparticles range from epitope carriers for vaccines to agents in cancer immunotherapy. Both VNPs and virus-like particles (VLPs) are highly immunogenic and are readily phagocytosed by antigen presenting cells (APCs), which in turn elicit antigen processing and display of pathogenic epitopes on their surfaces. Since the VLPs are composed of multiple copies of their respective capsid proteins, they present repetitive multivalent scaffolds which aid in antigen presentation. Therefore, the VLPs prove to be highly suitable platforms for delivery and presentation of antigenic epitopes, resulting in induction of more robust immune response compared to those of their soluble counterparts. Since the tumor microenvironment poses the challenge of self-antigen tolerance, VLPs are preferrable platforms for delivery and display of self-antigens as well as otherwise weakly immunogenic antigens. These properties, in addition to their diminutive size, enable the VLPs to deliver vaccines to the draining lymph nodes in addition to promoting APC interactions. Furthermore, many plant viral VLPs possess inherent adjuvant properties dispensing with the requirement of additional adjuvants to stimulate immune activity. Some of the highly immunogenic VLPs elicit innate immune activity, which in turn instigate adaptive immunity in tumor micro-environments. Plant viral VLPs are nontoxic, inherently stable, and capable of being mass-produced as well as being modified with antigens and drugs, therefore providing an attractive option for eliciting anti-tumor immunity. The following review explores the use of plant viruses as epitope carrying nanoparticles and as a novel tools in cancer immunotherapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Guangming Qiu ◽  
Sanyi Tang ◽  
Mengqi He

Roguing and replanting are the most common strategies to control plant diseases and pests. How to build the mathematical models of plant virus transmission and consider the impact of roguing and replanting strategies on plant virus eradication is of great practical significance. In the present paper, we propose the mathematical models for plant virus transmission with continuous and impulsive roguing control. For the model with continuous control strategies, the threshold values for the existences and stabilities of multiple equilibria have been given, and the effect of roguing strategies on the threshold values is also addressed. Furthermore, the model with impulsive roguing control tactics is proposed, and the existence and stability of the plant-only and disease-free periodic solutions of the model are investigated by calculating several threshold values. Moreover, when selecting the design control strategy to minimize the threshold, we systematically analyze the existence of the optimal times of roguing infected plants within a replanting cycle, which is of great significance to the design and optimization of the prevention and control strategy of plant virus transmission. Finally, numerical investigations are given to reveal the main conclusions, and the biological implications of the main results are briefly discussed in the last section.


2021 ◽  
Vol 1 ◽  
Author(s):  
Lucie Tamisier ◽  
Annelies Haegeman ◽  
Yoika Foucart ◽  
Nicolas Fouillien ◽  
Maher Al Rwahnih ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wikum H. Jayasinghe ◽  
Hangil Kim ◽  
Yusuke Nakada ◽  
Chikara Masuta

AbstractCucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.


Sign in / Sign up

Export Citation Format

Share Document