scholarly journals Detection of Crimes Using Unsupervised Learning Techniques

Author(s):  
R. Buli Babu ◽  
G. Snehal ◽  
Aditya Satya Kiran

Data mining can be used to detect model crime problems. This paper is about the importance of datamining about its techniques and how we can easily solve the crime. Crime data will be stored in criminal’s database.To analyze the data easily we have data mining technique that is clustering. Clustering is a method to group identicalcharacteristics in which the similarity is maximized or minimized. In clustering techniques also we have different typeof algorithm, but in this paper we are using the k-means algorithm and expectation-maximization algorithm. We areusing these techniques because these two techniques come under the partition algorithm. Partition algorithm is oneof the best methods to solve crimes and to find the similar data and group it. K-means algorithm is used to partitionthe grouped object based on their means. Expectation-maximization algorithm is the extension of k-means algorithmhere we partition the data based on their parameters.

Author(s):  
R. Buli Babu ◽  
G. Snehal ◽  
P. Aditya Satya Kiran

Data mining can be used to detect model crime problems. This paper is about the importance of data mining about its techniques and how we can easily solve the crime. Crime data will be stored in criminal’s database. To analyze the data easily we have data mining technique that is clustering. Clustering is a method to group identical characteristics in which the similarity is maximized or minimized. In clustering techniques also we have different type of algorithm, but in this paper we are using the k-means algorithm and expectation-maximization algorithm. We are using these techniques because these two techniques come under the partition algorithm. Partition algorithm is one of the best methods to solve crimes and to find the similar data and group it. K-means algorithm is used to partition the grouped object based on their means. Expectation-maximization algorithm is the extension of k-means algorithm here we partition the data based on their parameters.


2011 ◽  
pp. 874-882
Author(s):  
Rick L. Wilson ◽  
Peter A. Rosen ◽  
Mohammad Saad Al-Ahmadi

Considerable research has been done in the recent past that compares the performance of different data mining techniques on various data sets (e.g., Lim, Low, & Shih, 2000). The goal of these studies is to try to determine which data mining technique performs best under what circumstances. Results are often conflicting—for instance, some articles find that neural networks (NN) outperform both traditional statistical techniques and inductive learning techniques, but then the opposite is found with other datasets (Sen & Gibbs, 1994; Sung, Chang, & Lee, 1999: Spangler, May, & Vargas, 1999). Most of these studies use publicly available datasets in their analysis, and because they are not artificially created, it is difficult to control for possible data characteristics in the analysis. Another drawback of these datasets is that they are usually very small.


Author(s):  
Rick L. Wilson ◽  
Peter A. Rosen ◽  
Mohammad Saad Al-Ahmadi

Considerable research has been done in the recent past that compares the performance of different data mining techniques on various data sets (e.g., Lim, Low, & Shih, 2000). The goal of these studies is to try to determine which data mining technique performs best under what circumstances. Results are often conflicting—for instance, some articles find that neural networks (NN) outperform both traditional statistical techniques and inductive learning techniques, but then the opposite is found with other datasets (Sen & Gibbs, 1994; Sung, Chang, & Lee, 1999: Spangler, May, & Vargas, 1999). Most of these studies use publicly available datasets in their analysis, and because they are not artificially created, it is difficult to control for possible data characteristics in the analysis. Another drawback of these datasets is that they are usually very small.


Author(s):  
Rick L. Wilson ◽  
Peter A. Rosen ◽  
Mohammad Saad Al-Ahmadi

Considerable research has been done in the recent past that compares the performance of different data mining techniques on various data sets (e.g., Lim, Low, & Shih, 2000). The goal of these studies is to try to determine which data mining technique performs best under what circumstances. Results are often conflicting—for instance, some articles find that neural networks (NN) outperform both traditional statistical techniques and inductive learning techniques, but then the opposite is found with other datasets (Sen & Gibbs, 1994; Sung, Chang, & Lee, 1999: Spangler, May, & Vargas, 1999). Most of these studies use publicly available datasets in their analysis, and because they are not artificially created, it is difficult to control for possible data characteristics in the analysis. Another drawback of these datasets is that they are usually very small.


Author(s):  
Rick L. Wilson ◽  
Peter A. Rosen ◽  
Mohammad Saad Al-Ahmadi

Considerable research has been done in the recent past that compares the performance of different data mining techniques on various data sets (e.g., Lim, Low, & Shih, 2000). The goal of these studies is to try to determine which data mining technique performs best under what circumstances. Results are often conflicting—for instance, some articles find that neural networks (NN) outperform both traditional statistical techniques and inductive learning techniques, but then the opposite is found with other datasets (Sen & Gibbs, 1994; Sung, Chang, & Lee, 1999: Spangler, May, & Vargas, 1999). Most of these studies use publicly available datasets in their analysis, and because they are not artificially created, it is difficult to control for possible data characteristics in the analysis. Another drawback of these datasets is that they are usually very small.


Author(s):  
Md. Sadeki Salman ◽  
Nazmun Naher Shila ◽  
Khalid Hasan ◽  
Piash Ahmed ◽  
Mumenunnessa Keya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document