scholarly journals On estimation of Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their differences with disks

Author(s):  
V.N. Ushakov ◽  
M.V. Pershakov

We study a problem concerning the estimation of the Hausdorff deviation of convex polygons in $\mathbb R^2$ from their geometric difference with circles of sufficiently small radius. Problems with such a subject, in which not only convex polygons but also convex compacts in the Euclidean space $\mathbb R^n$ are considered, arise in various fields of mathematics and, in particular, in the theory of differential games, control theory, convex analysis. Estimates of Hausdorff deviations of convex compact sets in $\mathbb R^n$ in their geometric difference with closed balls in $\mathbb R^n$ are presented in the works of L.S. Pontryagin, his staff and colleagues. These estimates are very important in deriving an estimate for the mismatch of the alternating Pontryagin’s integral in linear differential games of pursuit and alternating sums. Similar estimates turn out to be useful in deriving an estimate for the mismatch of the attainability sets of nonlinear control systems in $\mathbb R^n$ and the sets approximating them. The paper considers a specific convex heptagon in $\mathbb R^2$. To study the geometry of this heptagon, we introduce the concept of a wedge in $\mathbb R^2$. On the basis of this notion, we obtain an upper bound for the Hausdorff deviation of a heptagon from its geometric difference with the disc in $\mathbb R^2$ of sufficiently small radius.




1996 ◽  
Vol 67 (3) ◽  
pp. 226-238 ◽  
Author(s):  
Ryszard Urbański


2009 ◽  
Vol 61 (2) ◽  
pp. 299-314 ◽  
Author(s):  
Robert J. MacG. Dawson and ◽  
Maria Moszyńska

Abstract. A set in a metric space is called a Čebyšev set if it has a unique “nearest neighbour” to each point of the space. In this paper we generalize this notion, defining a set to be Čebyšev relative to another set if every point in the second set has a unique “nearest neighbour” in the first. We are interested in Čebyšev sets in some hyperspaces over Rn, endowed with the Hausdorff metric, mainly the hyperspaces of compact sets, compact convex sets, and strictly convex compact sets. We present some new classes of Čebyšev and relatively Čebyšev sets in various hyperspaces. In particular, we show that certain nested families of sets are Čebyšev. As these families are characterized purely in terms of containment,without reference to the semi-linear structure of the underlyingmetric space, their properties differ markedly from those of known Čebyšev sets.



2013 ◽  
Vol 46 (1) ◽  
Author(s):  
Jerzy Grzybowski ◽  
Andrzej Leśniewski ◽  
Tadeusz Rzeżuchowski

AbstractThe Demyanov metric in the family of convex, compact sets in finite dimensional spaces has been recently extended to the family of convex, bounded sets – not necessarily closed. In this note it is shown that these spaces are not complete and a model for the completion is proposed. A full answer is given in ℝ



Cybernetics ◽  
1972 ◽  
Vol 4 (1) ◽  
pp. 37-41 ◽  
Author(s):  
B. N. Pshenichnyi


Sign in / Sign up

Export Citation Format

Share Document