scholarly journals A Survey of Latent Factor Models for Recommender Systems and Personalization

Author(s):  
Shalin Shah

<p>Recommender systems aim to personalize the experience of a user and are critical for businesses like retail portals, e-commerce websites, book sellers, streaming movie websites and so on. The earliest personalized algorithms use matrix factorization or matrix completion using algorithms like the singular value decomposition (SVD). There are other more advanced algorithms, like factorization machines, Bayesian personalized ranking (BPR), and a more recent Hebbian graph embeddings (HGE) algorithm. In this work, we implement BPR and HGE and compare our results with SVD, Non-negative matrix factorization (NMF) using the MovieLens dataset.</p>

2021 ◽  
Author(s):  
Shalin Shah

<p>Recommender systems aim to personalize the experience of a user and are critical for businesses like retail portals, e-commerce websites, book sellers, streaming movie websites and so on. The earliest personalized algorithms use matrix factorization or matrix completion using algorithms like the singular value decomposition (SVD). There are other more advanced algorithms, like factorization machines, Bayesian personalized ranking (BPR), and a more recent Hebbian graph embeddings (HGE) algorithm. In this work, we implement BPR and HGE and compare our results with SVD, Non-negative matrix factorization (NMF) using the MovieLens dataset.</p>


2021 ◽  
Author(s):  
Shalin Shah

Recommender systems aim to personalize the experience of user by suggesting items to the user based on the preferences of a user. The preferences are learned from the user’s interaction history or through explicit ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, a movie rental service or an online education portal and so on. In this paper, I will focus on matrix factorization algorithms as applied to recommender systems and discuss the singular value decomposition, gradient descent-based matrix factorization and parallelizing matrix factorization for large scale applications.


2013 ◽  
Vol 475-476 ◽  
pp. 1084-1089
Author(s):  
Hui Yuan Chang ◽  
Ding Xia Li ◽  
Qi Dong Liu ◽  
Rong Jing Hu ◽  
Rui Sheng Zhang

Recommender systems are widely employed in many fields to recommend products, services and information to potential customers. As the most successful approach to recommender systems, collaborative filtering (CF) predicts user preferences in item selection based on the known user ratings of items. It can be divided into two main braches - the neighbourhood approach (NB) and latent factor models. Some of the most successful realizations of latent factor models are based on matrix factorization (MF). Accuracy is one of the most important measurement criteria for recommender systems. In this paper, to improve accuracy, we propose an improved MF model. In this model, we not only consider the latent factors describing the user and item, but also incorporate content information directly into MF.Experiments are performed on the Movielens dataset to compare the present approach with the other method. The experiment results indicate that the proposed approach can remarkably improve the recommendation quality.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 3549-3564 ◽  
Author(s):  
Jesus Bobadilla ◽  
Rodolfo Bojorque ◽  
Antonio Hernando Esteban ◽  
Remigio Hurtado

Sign in / Sign up

Export Citation Format

Share Document