scholarly journals Stability properties of Radon measure-valued solutions for a class of nonlinear parabolic equations under Neumann boundary conditions

2021 ◽  
Vol 6 (11) ◽  
pp. 12182-12224
Author(s):  
Quincy Stévène Nkombo ◽  
◽  
Fengquan Li ◽  
Christian Tathy ◽  

<abstract><p>In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data.</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} u_{t} = \Delta\psi(u)+h(t)f(x, t) \ \ &amp;\text{in} \ \ \Omega\times(0, T), \\ \frac{\partial\psi(u)}{\partial\eta} = g(u) \ \ &amp;\text{on} \ \ \partial\Omega\times(0, T), \\ u(x, 0) = u_{0}(x) \ \ &amp;\text{in} \ \ \Omega, \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ T &gt; 0 $, $ \Omega\subset \mathbb{R}^{N}(N\geq2) $ is an open bounded domain with smooth boundary $ \partial\Omega $, $ \eta $ is an outward normal vector on $ \partial\Omega $. The initial value data $ u_{0} $ is a nonnegative bounded Radon measure on $ \Omega $, the function $ f $ is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions $ \psi $, $ g $ and $ h $ satisfy the suitable assumptions.</p></abstract>

2021 ◽  
Vol 39 (6) ◽  
pp. 81-103
Author(s):  
Elhoussine Azroul ◽  
Mohamed Badr Benboubker ◽  
Rachid Bouzyani ◽  
Houssam Chrayteh

Our aim in this paper is to study the existence of renormalized solution for a class of nonlinear p(x)-Laplace problems with Neumann nonhomogeneous boundary conditions and diuse Radon measure data which does not charge the sets of zero p(.)-capacity


Sign in / Sign up

Export Citation Format

Share Document