scholarly journals Large time behavior of solutions to parabolic equations with Neumann boundary conditions

2008 ◽  
Vol 339 (1) ◽  
pp. 384-398 ◽  
Author(s):  
Francesca Da Lio
2021 ◽  
Vol 6 (11) ◽  
pp. 12182-12224
Author(s):  
Quincy Stévène Nkombo ◽  
◽  
Fengquan Li ◽  
Christian Tathy ◽  

<abstract><p>In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data.</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} u_{t} = \Delta\psi(u)+h(t)f(x, t) \ \ &amp;\text{in} \ \ \Omega\times(0, T), \\ \frac{\partial\psi(u)}{\partial\eta} = g(u) \ \ &amp;\text{on} \ \ \partial\Omega\times(0, T), \\ u(x, 0) = u_{0}(x) \ \ &amp;\text{in} \ \ \Omega, \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ T &gt; 0 $, $ \Omega\subset \mathbb{R}^{N}(N\geq2) $ is an open bounded domain with smooth boundary $ \partial\Omega $, $ \eta $ is an outward normal vector on $ \partial\Omega $. The initial value data $ u_{0} $ is a nonnegative bounded Radon measure on $ \Omega $, the function $ f $ is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions $ \psi $, $ g $ and $ h $ satisfy the suitable assumptions.</p></abstract>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Rong Zhang ◽  
Liangchen Wang

<p style='text-indent:20px;'>This paper deals with the following competitive two-species and two-stimuli chemotaxis system with chemical signalling loop</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = \Delta u-\chi_1\nabla\cdot(u\nabla v)+\mu_1 u(1-u-a_1w),\, x\in \Omega,\, t&gt;0,\\ 0 = \Delta v-v+w,\,x\in\Omega,\, t&gt;0,\\ w_t = \Delta w-\chi_2\nabla\cdot(w\nabla z)-\chi_3\nabla\cdot(w\nabla v)+\mu_2 w(1-w-a_2u), \,x\in \Omega,\,t&gt;0,\\ 0 = \Delta z-z+u, \,x\in\Omega,\, t&gt;0, \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^n $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ n\geq1 $\end{document}</tex-math></inline-formula>, where the parameters <inline-formula><tex-math id="M3">\begin{document}$ a_1,a_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \chi_1, \chi_2, \chi_3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \mu_1, \mu_2 $\end{document}</tex-math></inline-formula> are positive constants. We first showed some conditions between <inline-formula><tex-math id="M6">\begin{document}$ \frac{\chi_1}{\mu_1} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \frac{\chi_2}{\mu_2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \frac{\chi_3}{\mu_2} $\end{document}</tex-math></inline-formula> and other ingredients to guarantee boundedness. Moreover, the large time behavior and rates of convergence have also been investigated under some explicit conditions.</p>


2008 ◽  
Vol 15 (3) ◽  
pp. 531-539
Author(s):  
Temur Jangveladze ◽  
Zurab Kiguradze

Abstract Large time behavior of solutions to the nonlinear integro-differential equation associated with the penetration of a magnetic field into a substance is studied. The rate of convergence is given, too. Dirichlet boundary conditions with homogeneous data are considered.


Sign in / Sign up

Export Citation Format

Share Document