Approximate P-wave Ray Tracing and Dynamic Ray Tracing in Weakly Orthorhombic Media of Varying Symmetry Orientation

Author(s):  
N. Masmoudi ◽  
I. Psencik
Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. W1-W14 ◽  
Author(s):  
Einar Iversen

Inspired by recent ray-theoretical developments, the theory of normal-incidence rays is generalized to accommodate P- and S-waves in layered isotropic and anisotropic media. The calculation of the three main factors contributing to the two-way amplitude — i.e., geometric spreading, phase shift from caustics, and accumulated reflection/transmission coefficients — is formulated as a recursive process in the upward direction of the normal-incidence rays. This step-by-step approach makes it possible to implement zero-offset amplitude modeling as an efficient one-way wavefront construction process. For the purpose of upward dynamic ray tracing, the one-way eigensolution matrix is introduced, having as minors the paraxial ray-tracing matrices for the wavefronts of two hypothetical waves, referred to by Hubral as the normal-incidence point (NIP) wave and the normal wave. Dynamic ray tracing expressed in terms of the one-way eigensolution matrix has two advantages: The formulas for geometric spreading, phase shift from caustics, and Fresnel zone matrix become particularly simple, and the amplitude and Fresnel zone matrix can be calculated without explicit knowledge of the interface curvatures at the point of normal-incidence reflection.


2008 ◽  
Vol 65 (5) ◽  
pp. 1679-1691 ◽  
Author(s):  
Chungu Lu ◽  
John P. Boyd

Abstract The effects of divergence on low-frequency Rossby wave propagation are examined by using the two-dimensional Wentzel–Kramers–Brillouin (WKB) method and ray tracing in the framework of a linear barotropic dynamic system. The WKB analysis shows that the divergent wind decreases Rossby wave frequency (for wave propagation northward in the Northern Hemisphere). Ray tracing shows that the divergent wind increases the zonal group velocity and thus accelerates the zonal propagation of Rossby waves. It also appears that divergence tends to feed energy into relatively high wavenumber waves, so that these waves can propagate farther downstream. The present theory also provides an estimate of a phase angle between the vorticity and divergence centers. In a fully developed Rossby wave, vorticity and divergence display a π/2 phase difference, which is consistent with the observed upper-level structure of a mature extratropical cyclone. It is shown that these theoretical results compare well with observations.


Sign in / Sign up

Export Citation Format

Share Document