3d model
Recently Published Documents


TOTAL DOCUMENTS

5306
(FIVE YEARS 1687)

H-INDEX

55
(FIVE YEARS 11)

2022 ◽  
Vol 3 (1) ◽  
pp. 67-83
Author(s):  
Ivana Mihaljinec ◽  
Erdal Eser

Divriği Great Mosque and Hospital as one of the World heritage monuments on UNESCO’s list was the subject of research. More precisely, the focus was on the architecture and the acoustic characteristics of the hospital built in 1228/1229 by Mengüjeck dynasty, a branch of Anatolian Seljuks. For the analysis purposes, a 3D model of the hospital was created, and the acoustic simulation was conducted. The results of the acoustic analysis show that the architectural characteristics of the hospital fulfill the acoustic standards for the good reception of the sound for the audience, and that it can be concluded that Divriği hospital venue supports the hypothesis of being suitable for the healing purposes. Hospital was designed to support the sound realization and to support the environmental soundscape in conjunction with the sounding makams, which supports the music therapy healing effect. It can be concluded that music therapy had acoustical support in the construction of Anatolian Seljuk hospitals, which have characteristics of concert halls and were built as acoustic (music) venues.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Chen Wang ◽  
Lujie Zhou ◽  
Yujing Jiang ◽  
Xuepeng Zhang ◽  
Jiankang Liu

An appropriate understanding of the hydraulic characteristics of the two-phase flow in the rock fracture network is important in many engineering applications. To investigate the two-phase flow in the fracture network, a study on the two-phase flow characteristics in the intersecting fractures is necessary. In order to describe the two-phase flow in the intersecting fractures quantitatively, in this study, a gas-water two-phase flow experiment was conducted in a smooth 3D model with intersecting fractures. The results in this specific 3D model show that the flow structures in the intersecting fractures were similar to those of the stratified wavy flow in pipes. The nonlinearity induced by inertial force and turbulence in the intersecting fractures cannot be neglected in the two-phase flow, and the Martinelli-Lockhart model is effective for the two-phase flow in intersecting fractures. Delhaye’s model can be adapted for the cases in this experiment. The turbulence of the flow can be indicated by the values of C in Delhaye’s model, but resetting the appropriate range of the values of C is necessary.


Author(s):  
Yuki Harazono ◽  
Hirotake Ishii ◽  
Hiroshi Shimoda ◽  
Yasuyoshi Taruta ◽  
Yuya Kouda

2022 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Taşkın Özkan ◽  
Norbert Pfeifer ◽  
Gudrun Styhler-Aydın ◽  
Georg Hochreiner ◽  
Ulrike Herbig ◽  
...  

We present a set of methods to improve the automation of the parametric 3D modeling of historic roof structures using terrestrial laser scanning (TLS) point clouds. The final product of the TLS point clouds consist of 3D representation of all objects, which were visible during the scanning, including structural elements, wooden walking ways and rails, roof cover and the ground; thus, a new method was applied to detect and exclude the roof cover points. On the interior roof points, a region-growing segmentation-based beam side face searching approach was extended with an additional method that splits complex segments into linear sub-segments. The presented workflow was conducted on an entire historic roof structure. The main target is to increase the automation of the modeling in the context of completeness. The number of manually counted beams served as reference to define a completeness ratio for results of automatically modeling beams. The analysis shows that this approach could increase the quantitative completeness of the full automatically generated 3D model of the roof structure from 29% to 63%.


MorphoMuseuM ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. e162
Author(s):  
Christophe Hendrickx ◽  
Phil Bell ◽  
Michael Pittman ◽  
Andrew R. C. Milner ◽  
Elena Cuesta ◽  
...  
Keyword(s):  
3D Model ◽  

Author(s):  
F. I. Hairuddin ◽  
A. R. Abdul Rasam ◽  
M. H. Razali

Abstract. This paper discusses the capabilities of cadastre augmented reality (AR) and three-dimensional (3D) visualization in enhancing the stratified property visibility and information of the current strata plan in Malaysia. Currently, 2D information representation from the 2D+1D cadastre system is seen to be insufficient in serving real land management of the 3D aspect and property. Hence, toward a better digital 3D strata/property registration and land administration system in Malaysia, this study has explored the process in utilizing AR and 3D model to the current strata plan to enhance digital strata information contents and enabling the virtual strata plan presentation. The software used to develop the AR application smartphone was Unity3D software while Autodesk Revit applied to develop the 3D model and preparation of strata information. The interesting findings has been shown in this study. First result showed 3D models and strata parcel’s attribute that has been developed for AR digital content preparation. Secondly, this 3D-AR processes can continuously gather of user’s ambient information, conduct real-world recognition, and obtain real-world perception through smartphone device. Lastly, with utilization of AR technology in strata, it provides a more information to the strata plan without needing to change the current format of strata plan as the information are being displayed virtually onto the reality. With the integration of augmented reality and 3D visualization, the documentation of stratified properties in strata plan is potential to be enhanced from 2D planimetric to 3D representation. overlaid 3D model of the stratified property and standard strata information virtually on the present strata plan which has created an enhanced reality. This can allow the information to be viewed by more stakeholders with less restriction by using smartphone device.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 461
Author(s):  
Seong-Tae Jo ◽  
Hyo-Seob Shin ◽  
Young-Geun Lee ◽  
Ji-Hun Lee ◽  
Jang-Young Choi

In this paper, the optimal design of a brushless direct current motor with a three-dimensional (3D) structure using the response surface methodology (RSM) is presented. There were two optimization goals: reduction of the cogging torque and maintenance of the back electromotive force to prevent performance degradation. For motors with a 3D structure, a 3D finite element method analysis is essential, though it requires considerable computation time. Therefore, to reduce the optimal design time, the 3D structure was placed on the 2D plane. Thereafter, a 2D corrected model was applied to the RSM. For the validity of the technique, the analysis results of the initial 3D model, 2D model, and 2D corrected model were compared, and the results of the optimal design 3D model, 2D corrected model, and experiment were compared.


FACE ◽  
2022 ◽  
pp. 273250162110722
Author(s):  
Mikhail Pakvasa ◽  
Hannes Prescher ◽  
Bryce Hendren-Santiago ◽  
Tony Da Lomba ◽  
Nicholas McKenzie ◽  
...  

Introduction: Stereolithography, also known as 3D printing (3DP), is a versatile and useful technology with many healthcare applications. While 3DP has gained tremendous popularity, it remains a daunting and perceptibly time-consuming process for the inexperienced user, with most turning to commercially printed products. Commercial vendors are expensive. We propose that 3DP is feasible for the inexperienced user with the appropriate knowledge and tools. Methods: A 3DP protocol was created for model design and printing using open-source software and a low-cost desktop printer. It was betatested by 3 inexperienced users. The fidelity of the protocol was then tested in direct comparison to industry models made for 3 patients undergoing mandibular distraction osteogenesis, using standard cephalometric measurements. Results: All inexperienced testers were able to successfully create a 3D model using the easy-to-follow protocol without the use of any other resources. The models were created in a mean time of 170 minutes. All cephalometric measurements on the open-source printed models were equal to within 0.5 to 1.0 mm of the respective industry models. Conclusions: As the 3DP process is simplified and desktop printers and materials become more affordable, we anticipate that its implementation will become more commonplace. We describe a step-by-step, protocol using open-source software and affordable materials to create 3D models.


Author(s):  
Hairui Yang ◽  
Yu Tian ◽  
Caifei Yang ◽  
Zhihui Wang ◽  
Lei Wang ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Grieb ◽  
Inés Barbero-García ◽  
José Luis Lerma

AbstractCranial deformation and deformational plagiocephaly (DP) in particular affect an important percentage of infants. The assessment and diagnosis of the deformation are commonly carried by manual measurements that provide low interuser accuracy. Another approach is the use of three-dimensional (3D) models. Nevertheless, in most cases, deformation measurements are carried out manually on the 3D model. It is necessary to develop methodologies for the detection of DP that are automatic, accurate and take profit on the high quantity of information of the 3D models. Spherical harmonics are proposed as a new methodology to identify DP from head 3D models. The ideal fitted ellipsoid for each head is computed and the orthogonal distances between head and ellipsoid are obtained. Finally, the distances are modelled using spherical harmonics. Spherical harmonic coefficients of degree 2 and order − 2 are identified as the correct ones to represent the asymmetry characteristic of DP. The obtained coefficient is compared to other anthropometric deformation indexes, such as Asymmetry Index, Oblique Cranial Length Ratio, Posterior Asymmetry Index and Anterior Asymmetry Index. The coefficient of degree 2 and order − 2 with a maximum degree of 4 is found to provide better results than the commonly computed anthropometric indexes in the detection of DP.


Sign in / Sign up

Export Citation Format

Share Document