spherical harmonic
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 175)

H-INDEX

54
(FIVE YEARS 6)

Author(s):  
O. Costin ◽  
R. D. Costin ◽  
C. Ogle ◽  
M. Bevis
Keyword(s):  

2022 ◽  
Vol 933 ◽  
Author(s):  
Erik Lindborg ◽  
Arne Nordmark

Following Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) we undertake a spectral analysis of a non-divergent flow on a sphere. It is shown that the spherical harmonic energy spectrum is invariant under rotations of the polar axis of the spherical harmonic system and argued that a constraint of isotropy would not simplify the analysis but only exclude low-order modes. The spectral energy equation is derived and it is shown that the viscous term has a slightly different form than given in previous studies. The relations involving energy transfer within a triad of modes, which Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) derived under the condition that energy transfer is restricted to three modes, are derived under general conditions. These relations show that there are two types of interaction within a triad. The first type is where the middle mode acts as a source for the two other modes and the second type is where it acts as a sink. The inequality indicating cascade directions which was derived by Gkioulekas & Tung (J. Fluid Mech., vol. 576, 2007, pp. 173–189) in Fourier space under the assumptions of narrow band forcing and stationarity is derived in spherical harmonic space under the assumption of dominance of first type interactions. The double cascade theory of Kraichnan (Phys. Fluids, vol. 10, 1967, pp. 1417–1423) is discussed in the light of the derived equations and it is hypothesised that in flows with limited scale separation the two cascades may, to a large extent, be produced by the same triad interactions. Finally, we conclude that the spherical geometry is the optimal test ground for exploration of two-dimensional turbulence by means of simulations.


2022 ◽  
Vol 2022 (01) ◽  
pp. 001
Author(s):  
Sarvesh Kumar Yadav ◽  
Rajib Saha

Abstract In the era of precision cosmology, accurate estimation of cosmological parameters is based upon the implicit assumption of the Gaussian nature of Cosmic Microwave Background (CMB) radiation. Therefore, an important scientific question to ask is whether the observed CMB map is consistent with Gaussian prediction. In this work, we extend previous studies based on CMB spherical harmonic phases (SHP) to examine the validity of the hypothesis that the temperature field of the CMB is consistent with a Gaussian random field (GRF). The null hypothesis is that the corresponding CMB SHP are independent and identically distributed in terms of a uniform distribution in the interval [0, 2π] [1,2]. We devise a new model-independent method where we use ordered and non-parametric Rao's statistic, based on sample arc-lengths to comprehensively test uniformity and independence of SHP for a given ℓ mode and independence of nearby ℓ mode SHP. We performed our analysis on the scales limited by spherical harmonic modes ≤ 128, to restrict ourselves to signal-dominated regions. To find the non-uniform or dependent sets of SHP, we calculate the statistic for the data and 10000 Monte Carlo simulated uniformly random sets of SHP and use 0.05 and 0.001 α levels to distinguish between statistically significant and highly significant detections. We first establish the performance of our method using simulated Gaussian, non-Gaussian CMB temperature maps, along with observed non-Gaussian 100 and 143 GHz Planck channel maps. We find that our method, performs efficiently and accurately in detecting phase correlations generated in all of the non-Gaussian simulations and observed foreground contaminated 100 and 143 GHz Planck channel temperature maps. We apply our method on Planck satellite mission's final released CMB temperature anisotropy maps- COMMANDER, SMICA, NILC, and SEVEM along with WMAP 9 year released ILC map. We report that SHP corresponding to some of the m-modes are non-uniform, some of the ℓ mode SHP and neighboring mode pair SHP are correlated in cleaned CMB maps. The detection of non-uniformity or correlation in the SHP indicates the presence of non-Gaussian signals in the foreground minimized CMB maps.


2021 ◽  
Vol 47 (4) ◽  
pp. 1-24
Author(s):  
Quoc T. Le Gia ◽  
Ming Li ◽  
Yu Guang Wang

Vector spherical harmonics on the unit sphere of ℝ 3 have broad applications in geophysics, quantum mechanics, and astrophysics. In the representation of a tangent vector field, one needs to evaluate the expansion and the Fourier coefficients of vector spherical harmonics. In this article, we develop fast algorithms (FaVeST) for vector spherical harmonic transforms on these evaluations. The forward FaVeST evaluates the Fourier coefficients and has a computational cost proportional to N log √ N for N number of evaluation points. The adjoint FaVeST, which evaluates a linear combination of vector spherical harmonics with a degree up to ⊡ M for M evaluation points, has cost proportional to M log √ M . Numerical examples of simulated tangent fields illustrate the accuracy, efficiency, and stability of FaVeST.


2021 ◽  
Author(s):  
Pierre Mézières ◽  
Mathias Paulin
Keyword(s):  

Author(s):  
Sean McTavish ◽  
Anh T. Van ◽  
Johannes M. Peeters ◽  
Kilian Weiss ◽  
Marcus R. Makowski ◽  
...  

Abstract Objective  To experimentally characterize the effectiveness of a gradient nonlinearity correction method in removing ADC bias for different motion-compensated diffusion encoding waveforms. Methods The diffusion encoding waveforms used were the standard monopolar Stejskal–Tanner pulsed gradient spin echo (pgse) waveform, the symmetric bipolar velocity-compensated waveform (sym-vc), the asymmetric bipolar velocity-compensated waveform (asym-vc) and the asymmetric bipolar partial velocity-compensated waveform (asym-pvc). The effectiveness of the gradient nonlinearity correction method using the spherical harmonic expansion of the gradient coil field was tested with the aforementioned waveforms in a phantom and in four healthy subjects. Results The gradient nonlinearity correction method reduced the ADC bias in the phantom experiments for all used waveforms. The range of the ADC values over a distance of ± 67.2 mm from isocenter reduced from 1.29 × 10–4 to 0.32 × 10–4 mm2/s for pgse, 1.04 × 10–4 to 0.22 × 10–4 mm2/s for sym-vc, 1.22 × 10–4 to 0.24 × 10–4 mm2/s for asym-vc and 1.07 × 10–4 to 0.11 × 10–4 mm2/s for asym-pvc. The in vivo results showed that ADC overestimation due to motion or bright vessels can be increased even further by the gradient nonlinearity correction. Conclusion The investigated gradient nonlinearity correction method can be used effectively with various motion-compensated diffusion encoding waveforms. In coronal liver DWI, ADC errors caused by motion and residual vessel signal can be increased even further by the gradient nonlinearity correction.


2021 ◽  
Author(s):  
Bart Root ◽  
Josef Sebera ◽  
Wolfgang Szwillus ◽  
Cedric Thieulot ◽  
Zdenek Martinec ◽  
...  

Abstract. Several alternative gravity forward modelling methodologies and associated numerical codes with their own advantages and limitations are available for the Solid Earth community. With the upcoming state-of-the-art lithosphere density models and accurate global gravity field data sets it is vital to understand the opportunities and limitations of the various approaches. In this paper, we discuss the four widely used techniques: global spherical harmonics (GSH), tesseroid integration (TESS), triangle integration (TRI), and hexahedral integration (HEX). A constant density shell benchmark shows that all four codes can produce similar precise gravitational potential fields. Two additional shell tests were conducted with more complicated density structures: lateral varying density structures and a Moho density interface between crust and mantle. The differences between the four codes were all below 1.5 percent of the modeled gravity signal suitable for reproducing satellite-acquired gravity data. TESS and GSH produced the most similar potential fields (< 0.3 percent). To examine the usability of the forward modelling codes for realistic geological structures, we use the global lithosphere model WINTERC-G, that was constrained, among other data, by satellite gravity field data computed using a spectral forward modeling approach. This spectral code was benchmarked against the GSH and it was confirmed that both approaches produce similar gravity solution with negligible differences between them. In the comparison of the different WINTERC-G-based gravity solutions, again GSH and TESS performed best. Only short-wavelength noise is present between the spectral and tesseroid forward modelling approaches, likely related to the different way in which the spherical harmonic analysis of the varying boundaries of the mass layer is performed. The Spherical harmonic basis functions produces small differences compared to the tesseroid elements especially at sharp interfaces, which introduces mostly short-wavelength differences. Nevertheless, both approaches (GSH and TESS) result in accurate solutions of the potential field with reasonable computational resources. Differences below 0.5 percent are obtained, resulting in residuals of 0.076 mGal standard deviation at 250 km height. The biggest issue for TRI is the characteristic pattern in the residuals that is related to the grid layout. Increasing the resolution and filtering allows for the removal of most of this erroneous pattern, but at the expense of higher computational loads with respect to the other codes. The other spatial forward modelling scheme HEX has more difficulty in reproducing similar gravity field solutions compared to GSH and TESS. These particular approaches need to go to higher resolutions, resulting in enormous computation efforts. The hexahedron-based code performs less than optimal in the forward modelling of the gravity signature, especially of a lateral varying density interface. Care must be taken with any forward modelling software as the approximation of the geometry of the WINTERC-G model may deteriorate the gravity field solution.


Author(s):  
Yuancheng Luo

AbstractMicrophone and speaker array designs have increasingly diverged from simple topologies due to diversity of physical host geometries and use cases. Effective beamformer design must now account for variation in the array’s acoustic radiation pattern, spatial distribution of target and noise sources, and intended beampattern directivity. Relevant tasks such as representing complex pressure fields, specifying spatial priors, and composing beampatterns can be efficiently synthesized using spherical harmonic (SH) basis functions. This paper extends the expansion of common stationary covariance functions onto the SHs and proposes models for encoding magnitude functions on a sphere. Conventional beamformer designs are reformulated in terms of magnitude density functions and beampatterns along SH bases. Applications to speaker far-field response fitting, cross-talk cancelation design, and microphone beampattern fitting are presented.


2021 ◽  
Vol 6 (24) ◽  
pp. 226-242
Author(s):  
Chivatsi Jonathan Nyoka ◽  
Ami Hassan Md Din ◽  
Muhammad Faiz Pa’suya

The description of the earth’s gravity field is usually expressed in terms of spherical harmonic coefficients, derived from global geopotential models. These coefficients may be used to evaluate such quantities as geoid undulations, gravity anomalies, gravity disturbances, deflection of the vertical, etc. To accomplish this, a global reference normal ellipsoid, such as WGS84 and GRS80, is required to provide the computing reference surface. These global ellipsoids, however, may not always provide the best fit of the local geoid and may provide results that are aliased. In this study, a regional or localized geocentric level ellipsoid is used alongside the EGM2008 to compute gravity field functionals in the state of Johor. Residual gravity field quantities are then computed using GNSS-levelled and raw gravity data, and the results are compared with both the WGS84 and the GRS80 equipotential surfaces. It is demonstrated that regional level ellipsoids may be used to compute gravity field functionals with a better fit, provided the zero-degree spherical harmonic is considered. The resulting residual quantities are smaller when compared with those obtained with global ellipsoids. It is expected that when the remove-compute-restore method is employed with such residuals, the numerical quadrature of the Stoke’s integral may be evaluated on reduced gravity anomalies that are smoother compared to when global equipotential surfaces are used


Sign in / Sign up

Export Citation Format

Share Document