Application of the Improved Perfectly Matched Layer in 2D Finite-difference Modeling with an Irregular Free Surface

Author(s):  
Y. Yang ◽  
J.P. Huang ◽  
Z.C. Li ◽  
Q.Y. Li ◽  
K. Tian
Author(s):  
Xiang Li ◽  
Gang Yao ◽  
Fenglin Niu ◽  
Di Wu

Abstract The irregular free surface topography has a significant impact on simulations of seismic wave propagation. Therefore, an accurate representation of the irregular free surface is required for an accurate wavefield simulation. We propose an immersed boundary method used in fluid dynamics calculation to simulate acoustic waves with finite-difference in media with irregular surfaces. First, we set the number of ghost layers to half the length of the finite-difference stencil. Then, we define mirror points by orthogonally projecting the ghost points to fractional points below the free surface. We calculate the wavefield at these mirror points using an iterative symmetric interpolation method. Finally, we set the wavefield at the ghost points to the negative value of the wavefield of their corresponding mirror points. The proposed iterative symmetric interpolation method allows computing the wavefield at the mirror points more accurately and stably than the conventional immersed boundary methods. Numerical examples validate the accuracy and stability of this method in seismic forward modelling with strongly varying topography.


2015 ◽  
Vol 64 (1) ◽  
pp. 112-128 ◽  
Author(s):  
Haiqiang Lan ◽  
Jingyi Chen ◽  
Zhongjie Zhang ◽  
Youshan Liu ◽  
Jianguo Zhao ◽  
...  

Geophysics ◽  
1988 ◽  
Vol 53 (11) ◽  
pp. 1425-1436 ◽  
Author(s):  
Alan R. Levander

I describe the properties of a fourth‐order accurate space, second‐order accurate time, two‐dimensional P-SV finite‐difference scheme based on the Madariaga‐Virieux staggered‐grid formulation. The numerical scheme is developed from the first‐order system of hyperbolic elastic equations of motion and constitutive laws expressed in particle velocities and stresses. The Madariaga‐Virieux staggered‐grid scheme has the desirable quality that it can correctly model any variation in material properties, including both large and small Poisson’s ratio materials, with minimal numerical dispersion and numerical anisotropy. Dispersion analysis indicates that the shortest wavelengths in the model need to be sampled at 5 gridpoints/wavelength. The scheme can be used to accurately simulate wave propagation in mixed acoustic‐elastic media, making it ideal for modeling marine problems. Explicitly calculating both velocities and stresses makes it relatively simple to initiate a source at the free‐surface or within a layer and to satisfy free‐surface boundary conditions. Benchmark comparisons of finite‐difference and analytical solutions to Lamb’s problem are almost identical, as are comparisons of finite‐difference and reflectivity solutions for elastic‐elastic and acoustic‐elastic layered models.


Sign in / Sign up

Export Citation Format

Share Document