difference scheme
Recently Published Documents


TOTAL DOCUMENTS

2452
(FIVE YEARS 499)

H-INDEX

66
(FIVE YEARS 6)

Author(s):  
Appanah R. Appadu ◽  
Yusuf O. Tijani

In this paper, we obtain the numerical solution of a 1-D generalised Burgers-Huxley equation under specified initial and boundary conditions, considered in three different regimes. The methods are Forward Time Central Space (FTCS) and a non-standard finite difference scheme (NSFD). We showed the schemes satisfy the generic requirements of the finite difference method in solving a particular problem. There are two proposed solutions for this problem and we show that one of the proposed solutions contains a minor error. We present results using FTCS, NSFD, and exact solution as well as show how the profiles differ when the two proposed solutions are used. In this problem, the boundary conditions are obtained from the proposed solutions. Error analysis and convergence tests are performed.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 197
Author(s):  
Huixia Huo ◽  
Houbao Xu ◽  
Zhuoqian Chen

This paper aims to obtain the dynamical solution and instantaneous availability of software systems with aperiodic impulse rejuvenation. Firstly, we formulate the generic system with a group of coupled impulsive differential equations and transform it into an abstract Cauchy problem. Then we adopt a difference scheme and establish the convergence of this scheme by applying the Trotter–Kato theorem to obtain the system’s dynamical solution. Moreover, the instantaneous availability as an important evaluation index for software systems is derived, and its range is also estimated. At last, numerical examples are shown to illustrate the validity of theoretical results.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Musa Cakir ◽  
Baransel Gunes

Abstract In this study, singularly perturbed mixed integro-differential equations (SPMIDEs) are taken into account. First, the asymptotic behavior of the solution is investigated. Then, by using interpolating quadrature rules and an exponential basis function, the finite difference scheme is constructed on a uniform mesh. The stability and convergence of the proposed scheme are analyzed in the discrete maximum norm. Some numerical examples are solved, and numerical outcomes are obtained.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 131
Author(s):  
Mikhail K. Kolev ◽  
Miglena N. Koleva ◽  
Lubin G. Vulkov

In this paper, we consider models of cancer migration and invasion, which consist of two nonlinear parabolic equations (one of the convection–diffusion reaction type and the other of the diffusion–reaction type) and an additional nonlinear ordinary differential equation. The unknowns represent concentrations or densities that cannot be negative. Widely used approximations, such as difference schemes, can produce negative solutions because of truncation errors and can become unstable. We propose a new difference scheme that guarantees the positivity of the numerical solution for arbitrary mesh step sizes. It has explicit and fast performance even for nonlinear reaction terms that consist of sums of positive and negative functions. The numerical examples illustrate the simplicity and efficiency of the method. A numerical simulation of a model of cancer migration is also discussed.


Sign in / Sign up

Export Citation Format

Share Document