Indexing Regional Objects in High-Dimensional Spaces

Author(s):  
Byunggu Yu ◽  
Ratko Orlandic

Many spatial access methods, such as the R-tree, have been designed to support spatial search operators (e.g., overlap, containment, and enclosure) over both points and regional objects in multi-dimensional spaces. Unfortunately, contemporary spatial access methods are limited by many problems that significantly degrade the query performance in high-dimensional spaces. This chapter reviews the problems of contemporary spatial access methods in spaces with many dimensions and presents an efficient approach to building advanced spatial access methods that effectively attack these problems. It also discusses the importance of high-dimensional spatial access methods for the emerging database applications, such as location-based services.

2011 ◽  
pp. 49-80
Author(s):  
Hans-Peter Kriegel ◽  
Martin Pfeifle ◽  
Marco Potke ◽  
Thomas Seidl ◽  
Jost Enderle

In order to generate efficient execution plans for queries comprising spatial data types and predicates, the database system has to be equipped with appropriate index structures, query processing methods and optimization rules. Although available extensible indexing frameworks provide a gateway for seamless integration of spatial access methods into the standard process of query optimization and execution, they do not facilitate the actual implementation of the spatial access method. An internal enhancement of the database kernel is usually not an option for database developers. The embedding of a custom, block-oriented index structure into concurrency control, recovery services and buffer management would cause extensive implementation efforts and maintenance cost, at the risk of weakening the reliability of the entire system. The server stability can be preserved by delegating index operations to an external process, but this approach induces severe performance bottlenecks due to context switches and inter-process communication. Therefore, we present the paradigm of object-relational spatial access methods that perfectly fits to the common relational data model, and is highly compatible with the extensible indexing frameworks of existing object-relational database systems, allowing the user to define application-specific access methods.


2008 ◽  
pp. 1156-1161
Author(s):  
Nikos Mamoulis ◽  
Spiridon Bakiras ◽  
Panos Kalnis

Sign in / Sign up

Export Citation Format

Share Document