Audio Watermarking Through Parametric Synthesis Models

Author(s):  
Yi-Wen Liu

This chapter promotes the use of parametric synthesis models in digital audio watermarking. It argues that, because human auditory perception is not a linear process, the optimal hiding of binary data in digital audio signals should consider parametric transforms that are generally nonlinear. To support this argument, an audio watermarking algorithm based on aligning frequencies of spectral peaks to grid points is presented as a case study; its robustness is evaluated and benefits are discussed. Toward the end, research directions are suggested, including watermark-aided sound source segregation, cocktail watermarking, and counter-measure against arithmetic collusive attacks.

Author(s):  
Sridhar Krishnan ◽  
Behnaz Ghoraani

In this book chapter, we present an overview of our time-frequency (TF) based audio watermarking methods. First, a motivation on the necessity of data authentication, and an introduction in Digital Rights Management (DRM) to protect digital multimedia contents is presented. TF techniques provide flexible means to analyze non-stationary audio signals. We have explained the joint TF domain for watermark representation, and have employed pattern recognition schemes for watermark detection. In this chapter; we introduce two watermarking methods; embedding non-linear and linear TF signatures as watermarking signatures. Robustness of the proposed methods against common signal manipulations is also studied in this chapter.


2015 ◽  
Vol 39 (4) ◽  
pp. 529-539 ◽  
Author(s):  
Farooq Husain ◽  
Omar Farooq ◽  
Ekram Khan

Abstract In this paper, a robust and perceptually transparent single-level and multi-level blind audio watermarking scheme using wavelets is proposed. A randomly generated binary sequence is used as a watermark, and wavelet function coding is used to embed the watermark sequence in audio signals. Multi-level watermarking is used to enhance payload capacity and can be used for a different level of security. The robustness of the scheme is evaluated by applying different attacks such as filtering, sampling rate alteration, compression, noise addition, amplitude scaling, and cropping. The simulation results obtained show that the proposed watermarking scheme is resilient to various attacks except cropping. Perceptual transparency of watermark is measured by using Perceptual Evaluation of Audio Quality (PEAQ) basic model of ITU-R (PEAQ ITU-R BS.1387) on Speech Quality Assessing Material (SQAM) given by European Broadcasting Union (EBU). Average Objective Difference Grade (ODG) measured for this method is -0.067 and -0.080 for single-level and multi-level watermarked audio signals, respectively. In the proposed single-level digital audio watermarking scheme, the payload capacity is increased by 19.05% as compared to the single-level Chirp-Based Digital Audio Watermarking (CB-DAWM) scheme.


2005 ◽  
pp. 126-156
Author(s):  
Changsheng Xu ◽  
Qi Tian

This chapter provides a comprehensive survey and summary of the technical achievements in the research area of digital audio watermarking. In order to give a big picture of the current status of this area, this chapter covers the research aspects of performance evaluation for audio watermarking, human auditory system, digital watermarking for PCM audio, digital watermarking for wav-table synthesis audio, and digital watermarking for compressed audio. Based on the current technology used in digital audio watermarking and the demand from real-world applications, future promising directions are identified.


Sign in / Sign up

Export Citation Format

Share Document