common signal
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 37)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 3 ◽  
Author(s):  
Salvador Peña-Haro ◽  
Maxence Carrel ◽  
Beat Lüthi ◽  
Issa Hansen ◽  
Robert Lukes

The volumetric flow rate in rivers is essential to analyze hydrological processes and at the same time it is one of the most difficult variables to measure. Image based discharge measurements possess several advantages, one of them being that the sensor (camera) is not in contact with the water, it can be placed safe of floods, its mounting position is very flexible and there is no need of expensive structures/constructions. During the last years several image-based methods for measuring the surface velocity in rivers and canals have been proposed and successfully tested under different conditions. However, these methods have been used and configured to perform well under the particular conditions of a single recording or single site. The objective of this paper is to present a system which has reached a Technology Readiness Level (TRL) 9. The system is able to measure the volumetric flow under different conditions day and night and all year long, the system is able to perform in rivers or canals of different sizes and flow velocities and under different conditions of visibility. In addition, the system is capable of measuring the river stage optically without the need of a stage, but it can also integrate external level sensor. Important for a wide set of customers, the system must be able to interface with the various common signal input and output standards, such as 4–20 mAmp, modbus, SDI-12, ZRXP, and even with customer specific formats. Additionally, the developed technology can be implemented as an edge or as a cloud system. The cloud system only needs a camera with Internet connection to send videos to the cloud where they are processed, while the edge systems have a processing unit installed at the site where the processing is done. This paper presents the key aspects needed to move from prototype with TRL5-7 and lower toward the presented field proven system with a TRL 9.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1778
Author(s):  
Huangwei Xu ◽  
Guanhua Xuan ◽  
Huaiwei Liu ◽  
Yongzhen Xia ◽  
Luying Xun

Sulfane sulfur, including persulfide and polysulfide, is produced from the metabolism of sulfur-containing organic compounds or from sulfide oxidation. It is a normal cellular component, participating in signaling. In bacteria, it modifies gene regulators to activate the expression of genes involved in sulfur metabolism. However, to determine whether sulfane sulfur is a common signal in bacteria, additional evidence is required. The ubiquitous multiple antibiotic resistance regulator (MarR) family of regulators controls the expression of numerous genes, but the intrinsic inducers are often elusive. Recently, two MarR family members, Pseudomonas aeruginosa MexR and Staphylococcus aureus MgrA, have been reported to sense sulfane sulfur. Here, we report that Escherichia coli MarR, the prototypical member of the family, also senses sulfane sulfur to form one or two disulfide or trisulfide bonds between two dimers. Although the tetramer with two disulfide bonds does not bind to its target DNA, our results suggest that the tetramer with one disulfide bond does bind to its target DNA, with reduced affinity. An MarR-repressed mKate reporter is strongly induced by polysulfide in E. coli. Further investigation is needed to determine whether sulfane sulfur is a common signal of the family members, but three members sense cellular sulfane sulfur to turn on antibiotic resistance genes. The findings offer additional support for a general signaling role of sulfane sulfur in bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Kai Lu ◽  
Shuyan Jiang ◽  
Yiming Zhao ◽  
Yongjie Lin ◽  
Yinhai Wang

The graphical progression method can obtain grand coordinated schemes with minimal computational complexity. However, there is no standardized solution for this method, and only a few related studies have been found thus far. Therefore, based on the in-depth discussion of the graphical optimization theory mechanism, a process-oriented and high-efficiency graphical method for symmetrical bidirectional corridor progression is proposed in this study. A two-round rotation transformation optimization process of the progression trajectory characteristic lines (PTC lines) is innovatively proposed. By establishing the updated judgment criteria for coordinated mode, the first round of PTC line rotation transformation realizes the optimization of coordinated modes and initial offsets. Giving the conditions for stopping rotation transformation and determining rotation points, rotation directions, and rotation angles, the second round of PTC line rotation transformation achieves the final optimization of the common signal cycle and offsets. The case study shows that the proposed graphical method can obtain the optimal progression effect through regular graphing and solving, although it can also be solved by highly efficient programming.


Author(s):  
Yu-Yan Zhao ◽  
Lin-Hui Chen ◽  
Liang Huang ◽  
Yong-Zhen Li ◽  
Chen Yang ◽  
...  

Cardiovascular and related metabolic diseases are significant global health challenges. Glucagon-like peptide 1 (GLP-1) is a brain-gut peptide secreted by ileal endocrine that is now an established drug target in type 2 diabetes (T2DM). GLP-1 targeting agents have been shown not only to treat T2DM, but also to exert cardiovascular protective effects through regulating multiple signaling pathways. The mitogen-activated protein kinase (MAPK) pathway, a common signal transduction pathway for transmitting extracellular signals to downstream effector molecules, is involved in regulating diverse cell physiological processes, including cell proliferation, differentiation, stress, inflammation, functional synchronization, transformation and apoptosis. The purpose of this review is to highlight the relationship between GLP-1 and cardiovascular disease (CVD), and discuss how GLP-1 exerts cardiovascular protective effects through MAPK signaling pathway. This review also discusses the future challenges in fully characterizing and evaluating the CVD protective effects of GLP-1 receptor agonists (GLP-1RA) at the cellular and molecular level. A better understanding of MAPK signaling pathway that are disregulated in CVD may aid in the design and development of promising GLP-1RA.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


2021 ◽  
Vol 269 ◽  
pp. 107156
Author(s):  
Chenxi Xu ◽  
Qingyu Zhao ◽  
Wenling An ◽  
Simon Wang ◽  
Ning Tan ◽  
...  

Author(s):  
Agnieszka Skibska ◽  
Renata Perlikowska

: Naturally occurring peptides found in the human skin can serve particular biological activities and play roles as signaling molecules of various physiological processes such as homeostasis, growth, defense or immunity. Their great biological activity resulted in a growing interest in the pharmaceutical industry. Researchers consider peptides either promising compounds with potential application for human diagnosis, therapy or cosmetics. Peptides are becoming interesting cosmetic ingredients with the functions to reduce premature skin aging, improve the barrier function of skin, moisturize the skin, protect it from UV-damage, and anti-inflammatory properties that alleviate acne and irritation. Till now, peptides of different origin were investigated in formulation developed to enhance collagen or elastin production, increase fibroblast proliferation, improve wound healing or skin condition. Most of them are obtained by chemical synthesis or by partial digestion of animal proteins. Short and easily synthesized peptides having an alternative amino acid sequence, and combinations have created a new field of molecules inspired by nature and implemented in cosmetic industry. Nowadays, peptides are cheaper and easier to produce in large quantities. The efficient process development methods allow obtaining nearly unlimited sequences, which makes them functionally preferred. Generally, cosmetic peptides are categorized as carrier peptides, neurotransmitter-affecting peptides, enzyme inhibitor peptides and signal peptides. The use of signal peptides in cosmetics increased over a few years. These molecules trigger a signaling cascade and stimulate fibroblast collagen production, the proliferation of elastin, fibronectin, laminin, etc. Thus, a literature search on a topical application of the most common signal peptides; and their current status in the cosmetic industry was carried out.


Author(s):  
Nathanael A. Fortune

Common signal processing tasks in the numerical handling of experimental data include interpolation, smoothing, and propagation of uncertainty. A comparison of experimental results to a theoretical model further requires curve fitting, the plotting of functions and data,  and a determination of the goodness of fit. These tasks often typically require an interactive, exploratory approach to the data, yet for the results to be reliable, the original data needs to be freely available and resulting analysis readily reproducible. In this article, we provide examples of how to use the Numerical Python (Numpy) and Scientific Python (SciPy) packages and interactive Jupyter Notebooks to accomplish these goals for data stored in a common plain text spreadsheet format. Sample Jupyter notebooks containing the Python code used to carry out these tasks are included and can be used as templates for the analysis of new data.


2021 ◽  
Author(s):  
Yariv Ben-Naim ◽  
Michal Weitman

Sweet basil (Ocimum basilicum, 2n=4x=48) is susceptible to downy mildew caused by Peronospora belbahrii. Pb1 gene exhibit complete resistance to the disease. However, Pb1 became prone to disease due to occurrence of a new virulent races. Here we show that Zambian accession PI 500950 (O. americanum var pilosum) is highly resistant to the new races. From an interspecies backcross between PI 500950 and the susceptible cv ‘Sweet Basil’ we obtained, by embryo rescue, a population of 131 BC1F1 plants. This population segregated 73 Resistant: 58 Susceptible (1: 1, P=0.22), suggesting the resistance is controlled by one incompletely dominant gene called Pb2. To determine whether allelic relationship is existing between Pb1 and Pb2, we used two differential races, race-0, avirulent to both PI 500945 (Pb1) and PI 500950 (Pb2) and race-1, virulent to PI 500945 but avirulent to PI 500950. F1 plants obtained from ‘12-4-6’ (BC6F3 derived from PI 500945) and ‘56’ (BC3F3 derived from PI 500950) showed resistant superiority to both races due to dominant complementary interaction. F2 plants segregated to race-0 as follow; 12:3:1, immune: incomplete resistant: susceptible, as against to 9:3:4 to race-1, indicating Pb1 and Pb2 are not alleles. Since joint action is contributed in F1 plants and in advanced (BC3F3(56) x BC6F3(12-4-6) F4) populations who carrying both genes, it can be assumed that both accessions carry two unlinked genes but share a common signal transduction pathway which leading to dominant complementation superiority of the resistance against different races of BDM.


Sign in / Sign up

Export Citation Format

Share Document