Evolution in Model-Driven Software Product-Line Architectures

2009 ◽  
pp. 1280-1312 ◽  
Author(s):  
Gan Deng ◽  
Jeff Gray ◽  
Douglas C. Schmidt ◽  
Yuehua Lin ◽  
Aniruddha Gokhale ◽  
...  

This chapter describes our approach to modeldriven engineering (MDE)-based product line architectures (PLAs) and presents a solution to address the domain evolution problem. We use a case study of a representative software-intensive system from the distributed real-time embedded (DRE) systems domain to describe key challenges when facing domain evolution and how we can evolve PLAs systematically and minimize human intervention. The approach uses a mature metamodeling tool to define a modeling language in the representative DRE domain, and applies a model transformation tool to specify model-tomodel transformation rules that precisely define metamodel and domain model changes. Our approach automates many tedious, time consuming, and error-prone tasks of model-to-model transformation, thus significantly reducing the complexity of PLA evolution.

Author(s):  
Gan Deng ◽  
Douglas C. Schmidt ◽  
Aniruddha Gokhale ◽  
Jeff Gray ◽  
Yuehua Lin ◽  
...  

This chapter describes our approach to model-driven engineering (MDE)-based product line architectures (PLAs) and presents a solution to address the domain evolution problem. We use a case study of a representative software-intensive system from the distributed real-time embedded (DRE) systems domain to describe key challenges when facing domain evolution and how we can evolve PLAs systematically and minimize human intervention. The approach uses a mature metamodeling tool to define a modeling language in the representative DRE domain, and applies a model transformation tool to specify modelto- model transformation rules that precisely define metamodel and domain model changes. Our approach automates many tedious, time consuming, and error-prone tasks of model-to-model transformation, thus significantly reducing the complexity of PLA evolution.


2015 ◽  
Vol 21 (2) ◽  
pp. 411-448 ◽  
Author(s):  
Heiko Koziolek ◽  
Thomas Goldschmidt ◽  
Thijmen de Gooijer ◽  
Dominik Domis ◽  
Stephan Sehestedt ◽  
...  

Author(s):  
Suet Chun Lee

Software product line (SPL) is a software engineering paradigm for software development. A software product within a product line often has specific functionalities that are not common to all other products within the product line. Those specific functionalities are termed “variant features” in a product line. SPL paradigm involves the modeling of variant features. However, little work in SPL investigates and addresses the modeling of variant features specific to user interface (UI). Unified Modeling Language (UML) is the de facto modeling language for object-oriented software systems. It is known that UML needs better support in modeling UIs. Thus, much research developed UML extensions to improve UML support in modeling UIs. Yet little of this work is related to developing such extensions for modeling UIs for SPLs in which variant features specific to UI modeling must be addressed. This research develops a UML extension -Web User Interface Modeling Language (WUIML) to address these problems. WUIML defines elements for modeling variant features specific to user interfaces for Web-based SPLs. The model elements in WUIML extend from the metaclass and BasicActivity of the UML2.0 metamodel. WUIML integrates the modeling of variant features specific to user interfaces to UML. For example, in a Web-based patient registration software product line, member products targeting British users may use British date format in the user interface, while member products targeting United States users may use United States date format in the user interface. Thus, this is a variant feature for this product line. WUIML defines a model element, XOR, to represent such exclusive or conditions in a product line user interface model. WUIML would reduce SPL engineers’ efforts needed in UI development. To validate the WUIML research outcome, a case study was conducted. The results of this empirical study indicate that modeling UIs for Web-based SPLs using WUIML is more effective and efficient than using standard UML.


Sign in / Sign up

Export Citation Format

Share Document