user interfaces
Recently Published Documents





2022 ◽  
Vol 22 (1) ◽  
pp. 1-22
David Major ◽  
Danny Yuxing Huang ◽  
Marshini Chetty ◽  
Nick Feamster

Many Internet of Things devices have voice user interfaces. One of the most popular voice user interfaces is Amazon’s Alexa, which supports more than 50,000 third-party applications (“skills”). We study how Alexa’s integration of these skills may confuse users. Our survey of 237 participants found that users do not understand that skills are often operated by third parties, that they often confuse third-party skills with native Alexa functions, and that they are unaware of the functions that the native Alexa system supports. Surprisingly, users who interact with Alexa more frequently are more likely to conclude that a third-party skill is a native Alexa function. The potential for misunderstanding creates new security and privacy risks: attackers can develop third-party skills that operate without users’ knowledge or masquerade as native Alexa functions. To mitigate this threat, we make design recommendations to help users better distinguish native functionality and third-party skills, including audio and visual indicators of native and third-party contexts, as well as a consistent design standard to help users learn what functions are and are not possible on Alexa.

2022 ◽  
Vol 54 (8) ◽  
pp. 1-38
Lik-Hang Lee ◽  
Tristan Braud ◽  
Simo Hosio ◽  
Pan Hui

Interaction design for Augmented Reality (AR) is gaining attention from both academia and industry. This survey discusses 260 articles (68.8% of articles published between 2015–2019) to review the field of human interaction in connected cities with emphasis on augmented reality-driven interaction. We provide an overview of Human-City Interaction and related technological approaches, followed by reviewing the latest trends of information visualization, constrained interfaces, and embodied interaction for AR headsets. We highlight under-explored issues in interface design and input techniques that warrant further research and conjecture that AR with complementary Conversational User Interfaces (CUIs) is a crucial enabler for ubiquitous interaction with immersive systems in smart cities. Our work helps researchers understand the current potential and future needs of AR in Human-City Interaction.

2022 ◽  
Vol 54 (7) ◽  
pp. 1-26
Michael Braun ◽  
Florian Weber ◽  
Florian Alt

Affective technology offers exciting opportunities to improve road safety by catering to human emotions. Modern car interiors enable the contactless detection of user states, paving the way for a systematic promotion of safe driver behavior through emotion regulation. We review the current literature regarding the impact of emotions on driver behavior and analyze the state of emotion regulation approaches in the car. We summarize challenges for affective interaction in the form of technological hurdles and methodological considerations, as well as opportunities to improve road safety by reinstating drivers into an emotionally balanced state. The purpose of this review is to outline the community’s combined knowledge for interested researchers, to provide a focussed introduction for practitioners, raise awareness for cultural aspects, and to identify future directions for affective interaction in the car.

2022 ◽  
Vol 11 (1) ◽  
pp. 101
Vinu Sherimon ◽  
P.C. Sherimon ◽  
Rahul V. Nair ◽  
Renchi Mathew ◽  
Sandeep M. Kumar ◽  

Introduction: Humankind is passing through a period of significant instability and a worldwide health catastrophe that has never been seen before. COVID-19 spread over the world at an unprecedented rate. In this context, we undertook a rapid research project in the Sultanate of Oman. We developed ecovid19 application, an ontology-based clinical decision support system (CDSS) with teleconference capability for easy, fast diagnosis and treatment for primary health centers/Satellite Clinics of the Royal Oman Police (ROP) of Sultanate of Oman.Materials and Methods: The domain knowledge and clinical guidelines are represented using ontology. Ontology is one of the most powerful methods for formally encoding medical knowledge. The primary data was from the ROP hospital's medical team, while the secondary data came from articles published in reputable journals. The application includes a COVID-19 Symptom checker for the public users with a text interface and an AI-based voice interface and is available in English and Arabic. Based on the given information, the symptom checker provides recommendations to the user. The suspected cases will be directed to the nearby clinic if the risk of infection is high. Based on the patient's current medical condition in the clinic, the CDSS will make suitable suggestions to triage staff, doctors, radiologists, and lab technicians on procedures and medicines. We used Teachable Machine to create a TensorFlow model for the analysis of X-rays. Our CDSS also has a WebRTC (Web Real-Time Communication system) based teleconferencing option for communicating with expert clinicians if the patient develops difficulties or if expert opinion is requested.Results: The ROP hospital's specialized doctors tested our CDSS, and the user interfaces were changed based on their suggestions and recommendations. The team put numerous types of test cases to assess the clinical efficacy. Precision, sensitivity (recall), specificity, and accuracy were adequate in predicting the various categories of patient instances.Conclusion: The proposed CDSS has the potential to significantly improve the quality of care provided to Oman's citizens. It can also be tailored to fit other terrifying pandemics.

2022 ◽  
Vol 8 ◽  
Anastasia K. Ostrowski ◽  
Jenny Fu ◽  
Vasiliki Zygouras ◽  
Hae Won Park ◽  
Cynthia Breazeal

As voice-user interfaces (VUIs), such as smart speakers like Amazon Alexa or social robots like Jibo, enter multi-user environments like our homes, it is critical to understand how group members perceive and interact with these devices. VUIs engage socially with users, leveraging multi-modal cues including speech, graphics, expressive sounds, and movement. The combination of these cues can affect how users perceive and interact with these devices. Through a set of three elicitation studies, we explore family interactions (N = 34 families, 92 participants, ages 4–69) with three commercially available VUIs with varying levels of social embodiment. The motivation for these three studies began when researchers noticed that families interacted differently with three agents when familiarizing themselves with the agents and, therefore, we sought to further investigate this trend in three subsequent studies designed as a conceptional replication study. Each study included three activities to examine participants’ interactions with and perceptions of the three VUIS in each study, including an agent exploration activity, perceived personality activity, and user experience ranking activity. Consistent for each study, participants interacted significantly more with an agent with a higher degree of social embodiment, i.e., a social robot such as Jibo, and perceived the agent as more trustworthy, having higher emotional engagement, and having higher companionship. There were some nuances in interaction and perception with different brands and types of smart speakers, i.e., Google Home versus Amazon Echo, or Amazon Show versus Amazon Echo Spot between the studies. In the last study, a behavioral analysis was conducted to investigate interactions between family members and with the VUIs, revealing that participants interacted more with the social robot and interacted more with their family members around the interactions with the social robot. This paper explores these findings and elaborates upon how these findings can direct future VUI development for group settings, especially in familial settings.

2022 ◽  
Simon Ott ◽  
Adriano Barbosa-Silva ◽  
Matthias Samwald

Machine learning algorithms for link prediction can be valuable tools for hypothesis generation. However, many current algorithms are black boxes or lack good user interfaces that could facilitate insight into why predictions are made. We present LinkExplorer, a software suite for predicting, explaining and exploring links in large biomedical knowledge graphs. LinkExplorer integrates our novel, rule-based link prediction engine SAFRAN, which was recently shown to outcompete other explainable algorithms and established black box algorithms. Here, we demonstrate highly competitive evaluation results of our algorithm on multiple large biomedical knowledge graphs, and release a web interface that allows for interactive and intuitive exploration of predicted links and their explanations.

2022 ◽  
Vol 22 (1) ◽  
Pärt Prommik ◽  
Kaspar Tootsi ◽  
Toomas Saluse ◽  
Eiki Strauss ◽  
Helgi Kolk ◽  

Abstract Background The Charlson and Elixhauser Comorbidity Indices are the most widely used comorbidity assessment methods in medical research. Both methods are adapted for use with the International Classification of Diseases, which 10th revision (ICD-10) is used by over a hundred countries in the world. Available Charlson and Elixhauser Comorbidity Index calculating methods are limited to a few applications with command-line user interfaces, all requiring specific programming language skills. This study aims to use Microsoft Excel to develop a non-programming and ICD-10 based dataset calculator for Charlson and Elixhauser Comorbidity Index and to validate its results with R- and SAS-based methods. Methods The Excel-based dataset calculator was developed using the program’s formulae, ICD-10 coding algorithms, and different weights of the Charlson and Elixhauser Comorbidity Index. Real, population-wide, nine-year spanning, index hip fracture data from the Estonian Health Insurance Fund was used for validating the calculator. The Excel-based calculator’s output values and processing speed were compared to R- and SAS-based methods. Results A total of 11,491 hip fracture patients’ comorbidities were used for validating the Excel-based calculator. The Excel-based calculator’s results were consistent, revealing no discrepancies, with R- and SAS-based methods while comparing 192,690 and 353,265 output values of Charlson and Elixhauser Comorbidity Index, respectively. The Excel-based calculator’s processing speed was slower but differing only from a few seconds up to four minutes with datasets including 6250–200,000 patients. Conclusions This study proposes a novel, validated, and non-programming-based method for calculating Charlson and Elixhauser Comorbidity Index scores. As the comorbidity calculations can be conducted in Microsoft Excel’s simple graphical point-and-click interface, the new method lowers the threshold for calculating these two widely used indices. Trial registration retrospectively registered.

2022 ◽  
Vol 4 ◽  
Reuth Mirsky ◽  
Ran Galun ◽  
Kobi Gal ◽  
Gal Kaminka

Plan recognition deals with reasoning about the goals and execution process of an actor, given observations of its actions. It is one of the fundamental problems of AI, applicable to many domains, from user interfaces to cyber-security. Despite the prevalence of these approaches, they lack a standard representation, and have not been compared using a common testbed. This paper provides a first step towards bridging this gap by providing a standard plan library representation that can be used by hierarchical, discrete-space plan recognition and evaluation criteria to consider when comparing plan recognition algorithms. This representation is comprehensive enough to describe a variety of known plan recognition problems and can be easily used by existing algorithms in this class. We use this common representation to thoroughly compare two known approaches, represented by two algorithms, SBR and Probabilistic Hostile Agent Task Tracker (PHATT). We provide meaningful insights about the differences and abilities of these algorithms, and evaluate these insights both theoretically and empirically. We show a tradeoff between expressiveness and efficiency: SBR is usually superior to PHATT in terms of computation time and space, but at the expense of functionality and representational compactness. We also show how different properties of the plan library affect the complexity of the recognition process, regardless of the concrete algorithm used. Lastly, we show how these insights can be used to form a new algorithm that outperforms existing approaches both in terms of expressiveness and efficiency.

2022 ◽  
Ross Gruetzemacher ◽  
David Paradice

AI is widely thought to be poised to transform business, yet current perceptions of the scope of this transformation may be myopic. Recent progress in natural language processing involving transformer language models (TLMs) offers a potential avenue for AI-driven business and societal transformation that is beyond the scope of what most currently foresee. We review this recent progress as well as recent literature utilizing text mining in top IS journals to develop an outline for how future IS research can benefit from these new techniques. Our review of existing IS literature reveals that suboptimal text mining techniques are prevalent and that the more advanced TLMs could be applied to enhance and increase IS research involving text data, and to enable new IS research topics, thus creating more value for the research community. This is possible because these techniques make it easier to develop very powerful custom systems and their performance is superior to existing methods for a wide range of tasks and applications. Further, multilingual language models make possible higher quality text analytics for research in multiple languages. We also identify new avenues for IS research, like language user interfaces, that may offer even greater potential for future IS research.

2022 ◽  
pp. 207-234
Ifeoluwapo Fashoro ◽  
Sithembile Ncube

The psychological health outcomes of video games are drawing increasing interest around the world. There is growing interest in video games as an accessible health intervention for depression and anxiety, both of which are rising health concerns globally. New interaction techniques for video games are becoming increasingly popular, with natural user interfaces (NUIs) becoming more commonplace in game systems. This chapter explores the design of a meditative game, a subgenre of casual games that intends for players to become calm and relaxed, and the evaluation of the NUIs for the game. The purpose of the chapter is to ascertain which NUI is most suitable for meditative games. A meditative fishpond game was designed that accepts two NUIs: touch and eye-tracking. The game was evaluated using a Positive and Negative Affect Schedule. The study found the eye-tracking interface reported a higher positive affect score from users and is therefore most suitable for meditative games.

Sign in / Sign up

Export Citation Format

Share Document