On Finite Groups with an Abelian Sylow Group

1962 ◽  
Vol 14 ◽  
pp. 436-450 ◽  
Author(s):  
Richard Brauer ◽  
Henry S. Leonard

We shall consider finite groups of order of g which satisfy the following condition:(*) There exists a prime p dividing g such that if P ≠ 1 is an element of p-Sylow group ofthen the centralizer(P) of P incoincides with the centralizer() of in.This assumption is satisfied for a number of important classes of groups. It also plays a role in discussing finite collineation groups in a given number of dimensions.Of course (*) implies that is abelian. It is possible to obtain rather detailed information about the irreducible characters of groups in this class (§ 4).

1989 ◽  
Vol 41 (1) ◽  
pp. 68-82 ◽  
Author(s):  
I. M. Isaacs

The main result of this paper is the following:Theorem A. Let H and N be finite groups with coprime orders andsuppose that H acts nontrivially on N via automorphisms. Assume that Hfixes every nonlinear irreducible character of N. Then the derived subgroup ofN is nilpotent and so N is solvable of nilpotent length≦ 2.Why might one be interested in a situation like this? There has been considerable interest in the question of what one can deduce about a group Gfrom a knowledge of the setcd(G) = ﹛x(l)lx ∈ Irr(G) ﹜of irreducible character degrees of G.Recently, attention has been focused on the prime divisors of the elements of cd(G). For instance, in [9], O. Manz and R. Staszewski consider π-separable groups (for some set π of primes) with the property that every element of cd(G) is either a 77-number or a π'-number.


2015 ◽  
Vol 30 ◽  
Author(s):  
Kijti Rodtes

In this note, the existence of orthogonal ∗-basis of the symmetry classes of polynomials is discussed. Analogously to the orthogonal ∗-basis of symmetry classes of tensor, some criteria for the existence of the basis for finite groups are provided. A condition for the existence of such basis of symmetry classes of polynomials associated to symmetric groups and some irreducible characters is also investigated.


2008 ◽  
Vol 320 (5) ◽  
pp. 2181-2195 ◽  
Author(s):  
Silvio Dolfi ◽  
Emanuele Pacifici ◽  
Lucia Sanus

1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


Sign in / Sign up

Export Citation Format

Share Document