symmetry classes
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 6 (1) ◽  
pp. 39
Author(s):  
Christoph Bandt ◽  
Dmitry Mekhontsev

Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields.


Author(s):  
R. Desmorat ◽  
N. Auffray ◽  
B. Desmorat ◽  
M. Olive ◽  
B. Kolev

2021 ◽  
Vol 31 (6) ◽  
pp. 335-340
Author(s):  
Ahmed Memdouh Younsi ◽  
Lakhdar Gacem ◽  
Mohamed Toufik Soltani

Trioxides of rubidium, strontium, and ruthenium belong to the family of alkali and alkaline earth ruthenates. SrRuO3 crystallizes in various symmetry classes—orthorhombic, tetragonal, or cubic—whereas RbRuO3 is perovskite (cubic) structured and crystallizes only in the cubic space group Pm3¯¯¯m(No. 221). In this study, we investigated the structural stability as well as the electronic and magnetic properties of two cubic perovskites SrRuO3 and RbRuO3. We established the corresponding lattice parameters, magnetic moments, density of states (DOS), and band structures using ab‑initio density‑functional theory (DFT). Both compounds exhibited a metallic ferromagnetic ground state with lattice parameter values between 3.83 and 3.96 Å; RbRuO3 had magnetic moments between 0.29 and 0.34 µBwhereas SrRuO3 had magnetic moments between 1.33 and 1.66 µB. This study paves way for further RbRuO3 research.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Michał Pacholski ◽  
Gal Lemut ◽  
J. Tworzydło ◽  
Carlo Beenakker

The spatial discretization of the single-cone Dirac Hamiltonian on the surface of a topological insulator or superconductor needs a special ``staggered’’ grid, to avoid the appearance of a spurious second cone in the Brillouin zone. We adapt the Stacey discretization from lattice gauge theory to produce a generalized eigenvalue problem, of the form \bm{\mathcal H}\bm{\psi}=\bm{E}\bm{\mathcal P}\bm{\psi}ℋ𝛙=𝐄𝒫𝛙, with Hermitian tight-binding operators \bm{\mathcal H}ℋ, \bm{\mathcal P}𝒫, a locally conserved particle current, and preserved chiral and symplectic symmetries. This permits the study of the spectral statistics of Dirac fermions in each of the four symmetry classes A, AII, AIII, and D.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 591
Author(s):  
Juan Zurita ◽  
Charles Creffield ◽  
Gloria Platero

We investigate the interplay between Aharonov-Bohm (AB) caging and topological protection in a family of quasi-one-dimensional topological insulators, which we term CSSH ladders. Hybrids of the Creutz ladder and the SSH chain, they present a regime with completely flat bands, and a rich topological phase diagram, with several kinds of protected zero modes. These are reminiscent of the Creutz ladder edge states in some cases, and of the SSH chain edge states in others. Furthermore, their high degree of tunability, and the fact that they remain topologically protected even in small systems in the rungless case, due to AB caging, make them suitable for quantum information purposes. One of the ladders can belong to the BDI, AIII and D symmetry classes depending on its parameters, the latter being unusual in a non-superconducting model. Two of the models can also harbor topological end modes which do not follow the usual bulk-boundary correspondence, and are instead related to a Chern number. Finally, we propose some experimental setups to implement the CSSH ladders with current technology, focusing on the photonic lattice case.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Helene Spring ◽  
Anton Akhmerov ◽  
Daniel Varjas

Protection of topological surface states by reflection symmetry breaks down when the boundary of the sample is misaligned with one of the high symmetry planes of the crystal. We demonstrate that this limitation is removed in amorphous topological materials, where the Hamiltonian is invariant on average under reflection over any axis due to continuous rotation symmetry. We show that the edge remains protected from localization in the topological phase, and the local disorder caused by the amorphous structure results in critical scaling of the transport in the system. In order to classify such phases we perform a systematic search over all the possible symmetry classes in two dimensions and construct the example models realizing each of the proposed topological phases. Finally, we compute the topological invariant of these phases as an integral along a meridian of the spherical Brillouin zone of an amorphous Hamiltonian.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 501
Author(s):  
Titas Chanda ◽  
Rebecca Kraus ◽  
Giovanna Morigi ◽  
Jakub Zakrzewski

Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in "exact" density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.


Sign in / Sign up

Export Citation Format

Share Document