Mean Convergence of Lagrange Interpolation for Exponential weights on [-1, 1]

1998 ◽  
Vol 50 (6) ◽  
pp. 1273-1297 ◽  
Author(s):  
D. S. Lubinsky

AbstractWe obtain necessary and sufficient conditions for mean convergence of Lagrange interpolation at zeros of orthogonal polynomials for weights on [-1, 1], such asw(x) = exp(-(1 - x2)-α), α > 0orw(x) = exp(-expk(1 - x2)-α), k≥1, α > 0,where expk = exp(exp(. . . exp( ) . . .)) denotes the k-th iterated exponential.

1996 ◽  
Vol 48 (4) ◽  
pp. 710-736 ◽  
Author(s):  
S. B. Damelin ◽  
D. S. Lubinsky

AbstractWe investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials pn(W2, x) for Erdös weights W2 = e-2Q. The archetypal example is Wk,α = exp(—Qk,α), whereα > 1, k ≥ 1, and is the k-th iterated exponential. Following is our main result: Let 1 < p < ∞, Δ ∊ ℝ, k > 0. Let Ln[f] denote the Lagrange interpolation polynomial to ƒ at the zeros of pn(W2, x) = pn(e-2Q, x). Then forto hold for every continuous function ƒ: ℝ —> ℝ satisfyingit is necessary and sufficient that


2003 ◽  
Vol 2003 (33) ◽  
pp. 2083-2095
Author(s):  
Zhixiong Chen

We investigate weightedLpmean convergence of Grünwald interpolation operators based on the zeros of orthogonal polynomials with respect to a general weight and generalizedJacobiweights. We give necessary and sufficient conditions for such convergence for all continuous functions.


1996 ◽  
Vol 48 (4) ◽  
pp. 737-757 ◽  
Author(s):  
S. B. Damelin ◽  
D. S. Lubinsky

AbstractWe complete our investigations of mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials pn(W2, x) for Erdős weights W2 = e-2Q. The archetypal example is Wk,α = exp(—Qk,α), whereα > 1, k ≥ 1, and is the k-th iterated exponential. Following is our main result: Let 1 < p < 4 and α ∊ ℝ Let Ln[f] denote the Lagrange interpolation polynomial to ƒ at the zeros of pn(W2, x) = pn(e-2Q, x). Then forto hold for every continuous function ƒ:ℝ. —> ℝ satisfyingit is necessary and sufficient that α > 1/p. This is, essentially, an extension of the Erdös-Turan theorem on L2 convergence. In an earlier paper, we analyzed convergence for all p > 1, showing the necessity and sufficiency of using the weighting factor 1 + Q for all p > 4. Our proofs of convergence are based on converse quadrature sum estimates, that are established using methods of H. König.


1996 ◽  
Vol 39 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Ying Guang Shi

AbstractWeighted LP mean convergence of Hermite-Fejér interpolation based on the zeros of orthogonal polynomials with respect to the weight |x|2α+1(l — x2)β(α, β > — 1) is investigated. A necessary and sufficient condition for such convergence for all continuous functions is given. Meanwhile divergence of Hermite-Fejér interpolation in LP with p > 2 is obtained. This gives a possible answer to Problem 17 of P. Turân [J. Approx. Theory, 29(1980), p. 40].


1996 ◽  
Vol 19 (4) ◽  
pp. 643-656 ◽  
Author(s):  
Amílcar Branquinho ◽  
Francisco Marcellán

Given a sequence of monic orthogonal polynomials (MOPS),{Pn}, with respect to a quasi-definite linear functionalu, we find necessary and sufficient conditions on the parametersanandbnfor the sequencePn(x)+anPn−1(x)+bnPn−2(x),   n≥1P0(x)=1,P−1(x)=0to be orthogonal. In particular, we can find explicitly the linear functionalvsuch that the new sequence is the corresponding family of orthogonal polynomials. Some applications for Hermite and Tchebychev orthogonal polynomials of second kind are obtained.We also solve a problem of this type for orthogonal polynomials with respect to a Hermitian linear functional.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj&gt; 0 for eachj&gt; 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


Sign in / Sign up

Export Citation Format

Share Document