lagrange interpolation
Recently Published Documents


TOTAL DOCUMENTS

612
(FIVE YEARS 111)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Guiqiao Xu ◽  
Xiaochen Yu

AbstractThis paper investigates the optimal Hermite interpolation of Sobolev spaces $W_{\infty }^{n}[a,b]$ W ∞ n [ a , b ] , $n\in \mathbb{N}$ n ∈ N in space $L_{\infty }[a,b]$ L ∞ [ a , b ] and weighted spaces $L_{p,\omega }[a,b]$ L p , ω [ a , b ] , $1\le p< \infty $ 1 ≤ p < ∞ with ω a continuous-integrable weight function in $(a,b)$ ( a , b ) when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in $L_{\infty }$ L ∞ (or $L_{p,\omega }[a,b]$ L p , ω [ a , b ] , $1\le p<\infty $ 1 ≤ p < ∞ ) are optimal for $W_{\infty }^{n}[a,b]$ W ∞ n [ a , b ] in $L_{\infty }[a,b]$ L ∞ [ a , b ] (or $L_{p,\omega }[a,b]$ L p , ω [ a , b ] , $1\le p<\infty $ 1 ≤ p < ∞ ). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.


2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Juan Liu ◽  
Laiyi Zhu

In the paper, we study the upper bound estimation of the Lebesgue constant of the bivariate Lagrange interpolation polynomial based on the common zeros of product Chebyshev polynomials of the second kind on the square − 1,1 2 . And, we prove that the growth order of the Lebesgue constant is O n + 2 2 . This result is different from the Lebesgue constant of Lagrange interpolation polynomial on the unit disk, the growth order of which is O n . And, it is different from the Lebesgue constant of the Lagrange interpolation polynomial based on the common zeros of product Chebyshev polynomials of the first kind on the square − 1,1 2 , the growth order of which is O ln n 2 .


Author(s):  
Bin He ◽  
Guangsheng Wei

In this paper, we consider a class of functional equation Q(λ)Y (λ) −P(λ)Z(λ) = η related to sine type functions, where the known P,Q are appropriate entire functions of exponential type. We are concerned with the existence and uniqueness of the solution (Y,Z) under certain circumstances. Furthermore, we modify the Lagrange interpolation to deal with the situation of the interpolation nodes being counted by multiplicities, which is significant to solve the above functional equation.


2021 ◽  
Author(s):  
Loc Nguyen

Lagrange interpolation is the effective method to approximate an arbitrary function by a polynomial. But there is a need to estimate derivative and integral given a set of points. Although it is possible to make Lagrange interpolation first, which produces Lagrange polynomial; after that we take derivative or integral on such polynomial. However this approach does not result out the best estimation of derivative and integral. This research proposes a different approach that makes approximation of derivative and integral based on point data first, which in turn applies Lagrange interpolation into the approximation. Moreover, the research also proposes an extension of Lagrange interpolation to bivariate function, in which interpolation polynomial is converted as two-variable polynomial.


Author(s):  
E. S. Shoukralla ◽  
Nermin Saber ◽  
Ahmed Y. Sayed

AbstractIn this study, we applied an advanced barycentric Lagrange interpolation formula to find the interpolate solutions of weakly singular Fredholm integral equations of the second kind. The kernel is interpolated twice concerning both variables and then is transformed into the product of five matrices; two of them are monomial basis matrices. To isolate the singularity of the kernel, we developed two techniques based on a good choice of different two sets of nodes to be distributed over the integration domain. Each set is specific to one of the kernel arguments so that the kernel values never become zero or imaginary. The significant advantage of thetwo presented techniques is the ability to gain access to an algebraic linear system equivalent to the interpolant solution without applying the collocation method. Moreover, the convergence in the mean of the interpolant solution and the maximum error norm estimation are studied. The interpolate solutions of the illustrated four examples are found strongly converging uniformly to the exact solutions.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012090
Author(s):  
Jorge Olivares Funes ◽  
Elvis Valero Kari

Abstract In this paper we will show the algebraic and graphic expressions, that were obtained through the Euler method and Lagrange interpolation by means of GeoGebra software for some linear second order differential equations. This teaching material was designed for the course of differential equations, and as a complement of support for the numerical calculation course for the engineering careers of the Universidad de Antofagasta.


Sign in / Sign up

Export Citation Format

Share Document