scholarly journals New Interpretation of Newton’s Law of Universal Gravitation

2017 ◽  
Vol 03 (04) ◽  
pp. 600-623
Author(s):  
Dalgerti L. Milanese
2013 ◽  
Vol 22 (09) ◽  
pp. 1350067 ◽  
Author(s):  
B. A. ROBSON

Galactic dark matter is matter hypothesized to account for the discrepancy of the mass of a galaxy determined from its gravitational effects, assuming the validity of Newton's law of universal gravitation, and the mass calculated from the "luminous matter", stars, gas, dust, etc. observed to be contained within the galaxy. The conclusive observation from the rotation curves of spiral galaxies that the mass discrepancy is greater, the larger the distance scales involved implies that either Newton's law of universal gravitation requires modification or considerably more mass (dark matter) is required to be present in each galaxy. Both the modification of Newton's law of gravitation and the hypothesis of the existence of considerable dark matter in a galaxy are discussed. It is shown that the Generation Model (GM) of particle physics, which leads to a modification of Newton's law of gravitation, is found to be essentially equivalent to that of Milgrom's modified Newtonian dynamics (MOND) theory, with the GM providing a physical understanding of the MOND theory. The continuing success of MOND theory in describing the extragalactic mass discrepancy problems constitutes a strong argument against the existence of undetected dark matter haloes, consisting of unknown nonbaryonic matter, surrounding spiral galaxies.


2017 ◽  
Vol 8 (4) ◽  
pp. 219-224
Author(s):  
Yi lingzhi ◽  
◽  
Xiao Weihong ◽  
Yu Wenxin ◽  
Wang Genpin

Leonardo ◽  
2020 ◽  
Vol 53 (2) ◽  
pp. 145-150
Author(s):  
Edward C. Warburton ◽  
Gregory Laughlin

The authors describe an art-science collaboration to devise and perform a qualitatively accurate interpretation of an elliptic-hyperbolic solution to the classical astronomical “problem of three bodies,” in which three point masses execute trajectories dictated by Newton's Law of Universal Gravitation.


1997 ◽  
Vol 35 (4) ◽  
pp. 248-250 ◽  
Author(s):  
James A. Flaten

2021 ◽  
Vol 34 (1) ◽  
pp. 68-78
Author(s):  
Lizandro B. R. Zegarra ◽  
Milton C. Gutierrez ◽  
Fidel A. V. Obeso ◽  
Luis T. Quispe ◽  
L. E. G. Armas

In this work, a new approach is presented with the aim of showing a simple way of unifying the classical formulas for the forces of the Coulomb’s law of electrostatic interaction <mml:math display="inline"> <mml:mrow> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>C</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and the Newton’s law of universal gravitation <mml:math display="inline"> <mml:mrow> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> . In this approach, these two forces are of the same nature and are ascribed to the interaction between two membranes that oscillate according to different curvature functions with spatial period <mml:math display="inline"> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mi>π</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> </mml:mfrac> </mml:mrow> </mml:math> , where <mml:math display="inline"> <mml:mi>ξ</mml:mi> </mml:math> is a dimensionless parameter and <mml:math display="inline"> <mml:mi>k</mml:mi> </mml:math> is a wave number. Both curvature functions are solutions of the classical wave equation with wavelength given by the de Broglie relation. This new formula still keeps itself as the inverse square law, and it is like <mml:math display="inline"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>C</mml:mi> </mml:msub> </mml:mrow> </mml:math> when the dimensionless parameter <mml:math display="inline"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>274</mml:mn> </mml:mrow> </mml:math> and like <mml:math display="inline"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:msub> </mml:mrow> </mml:math> when <mml:math display="inline"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1.14198</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>45</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . It was found that the values of the parameter <mml:math display="inline"> <mml:mi>ξ</mml:mi> </mml:math> quantize the formula from which <mml:math display="inline"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>C</mml:mi> </mml:msub> </mml:mrow> </mml:math> and <mml:math display="inline"> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:msub> </mml:mrow> </mml:math> are obtained as particular cases.


Sign in / Sign up

Export Citation Format

Share Document