firefly algorithm
Recently Published Documents


TOTAL DOCUMENTS

2141
(FIVE YEARS 811)

H-INDEX

59
(FIVE YEARS 13)

Kybernetes ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hanieh Shambayati ◽  
Mohsen Shafiei Nikabadi ◽  
Seyed Mohammad Ali Khatami Firouzabadi ◽  
Mohammad Rahmanimanesh ◽  
Sara Saberi

PurposeSupply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies today. This paper designed a virtual closed-loop supply chain (VCLSC) network based on multiperiod, multiproduct and by using the Internet of Things (IoT). The purpose of the paper is the optimization of the VCLSC network.Design/methodology/approachThe proposed model considers the maximization of profit. For this purpose, costs related to virtualization such as security, energy consumption, recall and IoT facilities along with the usual costs of the SC are considered in the model. Due to real-world demand fluctuations, in this model, demand is considered fuzzy. Finally, the problem is solved using the Grey Wolf algorithm and Firefly algorithm. A numerical example and sensitivity analysis on the main parameters of the model are used to describe the importance and applicability of the developed model.FindingsThe findings showed that the Firefly algorithm performed better and identified more profit for the SC in each period. Also, the results of the sensitivity analysis using the IoT in a VCLSC showed that the profit of the virtual supply chain (VSC) is higher compared to not using IoT due to tracking defective parts and identifying reversible products. In proposed model, chain members can help improve chain operations by tracking raw materials and products, delivering products faster and with higher quality to customers, bringing a new level of SC efficiency to industries. As a result, VSCs can be controlled, programmed and optimized remotely over the Internet based on virtual objects rather than direct observation.Originality/valueThere are limited researches on designing and optimizing the VCLSC network. This study is one of the first studies that optimize the VSC networks considering minimization of virtual costs and maximization of profits. In most researches, the theory of VSC and its advantages have been described, while in this research, mathematical optimization and modeling of the VSC have been done, and it has been tried to apply SC virtualization using the IoT. Considering virtual costs in VSC optimization is another originality of this research. Also, considering the uncertainty in the SC brings the issue closer to the real world. In this study, virtualization costs including security, recall and energy consumption in SC optimization are considered.HighlightsInvestigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 168
Author(s):  
Trong-The Nguyen ◽  
Truong-Giang Ngo ◽  
Thi-Kien Dao ◽  
Thi-Thanh-Tan Nguyen

Microgrid operations planning is crucial for emerging energy microgrids to enhance the share of clean energy power generation and ensure a safe symmetry power grid among distributed natural power sources and stable functioning of the entire power system. This paper suggests a new improved version (namely, ESSA) of the sparrow search algorithm (SSA) based on an elite reverse learning strategy and firefly algorithm (FA) mutation strategy for the power microgrid optimal operations planning. Scheduling cycles of the microgrid with a distributed power source’s optimal output and total operation cost is modeled based on variables, e.g., environmental costs, electricity interaction, investment depreciation, and maintenance system, to establish grid multi-objective economic optimization. Compared with other literature methods, such as Genetic algorithm (GA), Particle swarm optimization (PSO), Firefly algorithm (FA), Bat algorithm (BA), Grey wolf optimization (GWO), and SSA show that the proposed plan offers higher performance and feasibility in solving microgrid operations planning issues.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Manjit Kaur ◽  
Deepak Prashar ◽  
Mamoon Rashid ◽  
Zeba Khanam ◽  
Sultan S. Alshamrani ◽  
...  

In flying ad hoc networks (FANETs), load balancing is a vital issue. Numerous conventional routing protocols that have been created are ineffective at load balancing. The different scope of its applications has given it wide applicability, as well as the necessity for location assessment accuracy. Subsequently, implementing traffic congestion control based on the current connection status is difficult. To successfully tackle the above problem, we frame the traffic congestion control algorithm as a network utility optimization problem that takes different parameters of the network into account. For the location calculation of unknown nodes, the suggested approach distributes the computational load among flying nodes. Furthermore, the technique has been optimized in a FANET utilizing the firefly algorithm along with the traffic congestion control algorithm. The unknown nodes are located using the optimized backbone. Because the computational load is divided efficiently among the flying nodes, the simulation results show that our technique considerably enhances the network longevity and balanced traffic.


Author(s):  
Lianglin Cao ◽  
Kerong Ben ◽  
Hu Peng ◽  
Xian Zhang
Keyword(s):  

2022 ◽  
pp. 1118-1129
Author(s):  
Nawaf N. Hamadneh

In this study, the performance of adaptive multilayer perceptron neural network (MLPNN) for predicting the Dead Sea water level is discussed. Firefly Algorithm (FFA), as an optimization algorithm is used for training the neural networks. To propose the MLPNN-FFA model, Dead Sea water levels over the period 1810–2005 are applied to train MLPNN. Statistical tests evaluate the accuracy of the hybrid MLPNN-FFA model. The predicted values of the proposed model were compared with the results obtained by another method. The results reveal that the artificial neural network (ANN) models exhibit high accuracy and reliability for the prediction of the Dead Sea water levels. The results also reveal that the Dead Sea water level would be around -450 until 2050.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Gagan Deep Singh ◽  
Manish Prateek ◽  
Sunil Kumar ◽  
Madhushi Verma ◽  
Dilbag Singh ◽  
...  

Author(s):  
Gayathri Devi K

Abstract: Job shop scheduling has always been one of the most sought out research problems in Combinatorial optimization. Job Shop Scheduling problems (JSSP) are categorized under NP hard problems. In recent years the meta heuristic algorithms have been proved effective to solve hardcore NP problem. Firefly Algorithm is one of such meta heuristic techniques which is nature inspired from firefly characteristic. Its potential can be enhanced further by hybridizing it with other known evolutionary algorithms and thereby getting improved results in less computational time. In this paper we have proposed a new hybrid technique christened as HyFA, by hybridizing Firefly algorithm(FA) with simulated annealing (SA) and Greedy heuristics approach (GHA). The hybrid technique has the advantages of all three algorithms and are combined in such a way that a quicker and better optimal solution is obtained. Our proposed HyFA is coded in Matlab with an objective to minimize the makespan (Cm). The novel hybrid technique is then used to evaluate 1-25 Lawrence problems taken from literature. The results show the proposed technique is more effective not only in getting optimal results but has significantly reduced computational time. Keywords: Scheduling, Optimisation, Job shop scheduling, Meta-heuristics, Firefly, Simulated Annealing, Greedy heuristics Approach.


Sign in / Sign up

Export Citation Format

Share Document